12.已知函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上的最大值比最小值大$\frac{2a}{3}$,求實數(shù)a的值.

分析 分別就當(dāng)a>1和當(dāng)0<a<1時指數(shù)函數(shù)的單調(diào)性,可得關(guān)于a的方程,解方程可得.

解答 解:當(dāng)a>1時,函數(shù)f(x)=ax在區(qū)間[1,2]上是增函數(shù),
∴f(x)min=f(1)=a,f(x)max=f(2)=a2,
由題意知a2-a=$\frac{2a}{3}$,解得a=$\frac{5}{3}$,或a=0(舍去);
當(dāng)0<a<1時,函數(shù)f(x)=ax在區(qū)間[1,2]上是減函數(shù),
∴f(x)min=f(1)=a2,f(x)max=f(2)=a,
由題意知a-a2=$\frac{2a}{3}$,解得a=$\frac{1}{3}$,或a=0(舍去);
綜上可知,a的值為$\frac{5}{3}$或$\frac{1}{3}$

點評 本題考查指數(shù)函數(shù)的單調(diào)性和最值,涉及分類討論的思想,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知雙曲線M:9x2-16y2=144,若橢圓N以M的焦點為頂點,以M的頂點為焦點,則橢圓N的準線方程是( 。
A.x=±$\frac{16}{5}$B.x=±$\frac{25}{4}$C.x=±$\frac{16}{3}$D.x=±$\frac{25}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知A,D分別是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左頂點和上頂點,點P是線段AD上的任意一點,點F1,F(xiàn)2分別是橢圓的左,右焦點,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值是1,最小值是-$\frac{11}{5}$,則橢圓的標(biāo)準方程$\frac{{x}^{2}}{4}$+y2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)$f(x)=2sin({ωx+φ})(ω>0,|φ|<\frac{π}{2})$的圖象,其部分圖象如圖所示,則f(x)=2sin(x-$\frac{π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知點P(x,3)是角θ終邊上一點,且cosθ=-$\frac{4}{5}$,則x的值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知α是第二象限角,且sin$α=\frac{2\sqrt{5}}{5}$,則tan($α+\frac{π}{4}$)=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知a>1,b>0,a+b=2,則$\frac{1}{a-1}$+$\frac{1}$的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)f(x)=ax-xlna(0<a<1),若對于任意x∈[-1,1],不等式f(x)≤e-1恒成立,則實數(shù)a的取值范圍是[$\frac{1}{e}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若關(guān)于x的方程($\frac{1}{9}$)x+($\frac{1}{3}$)x-2-a=0有正數(shù)解,則實數(shù)a的取值范圍是(0,10).

查看答案和解析>>

同步練習(xí)冊答案