分析 由題意找出線面角,設(shè)BB′=a,CC′=b,可得ab=2,然后由a的變化得到A′B′的變化范圍,從而求得tanφ的范圍.
解答 解:如圖,
由CC′⊥α,A′B′?α,得A′B′⊥CC′,
又A′B′⊥A′C′,且A′C′∩CC′=C′,
∴A′B′⊥面A′C′C,則φ=∠B′CA′,
設(shè)BB′=a,CC′=b,則A′B′2=4-a2,A′C′2=4-b2,
設(shè)B′C′=c,
則有$\left\{\begin{array}{l}{4-{a}^{2}+4-^{2}={c}^{2}}\\{(\frac{c}{2})^{2}+(\frac{a+b}{2})^{2}=3}\end{array}\right.$,整理得:ab=2.
∵|BB′|≤|CC′|,∴a≤b,
tanφ=$\frac{A′B′}{2}$,
在三角形BB′A′中,∵斜邊A′B為定值2,
∴當(dāng)a最大為$\sqrt{2}$時(shí),A′B′取最小值$\sqrt{2}$,tanφ的最小值為$\frac{\sqrt{2}}{2}$.
當(dāng)a減小時(shí),tanφ增大,
若a≤1,則b≥2,在Rt△A′CC′中出現(xiàn)直角邊大于等于斜邊,矛盾,
∴a>1,此時(shí)A′B′<$\sqrt{3}$,即tanφ$<\frac{\sqrt{3}}{2}$.
∴tanφ的范圍為$[{\frac{{\sqrt{2}}}{2},\frac{{\sqrt{3}}}{2}})$.
故答案為:$[{\frac{{\sqrt{2}}}{2},\frac{{\sqrt{3}}}{2}})$.
點(diǎn)評(píng) 本題考查了直線與平面所成的角,考查了空間想象能力和思維能力,靈活性強(qiáng),屬有一定難度題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com