在等比數(shù)列{an}中,a3=2,a6=16,則公比q=
 
考點:等比數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:根據(jù)等比數(shù)列的通項公式,建立方程關(guān)系即可得到結(jié)論.
解答: 解:在等比數(shù)列中,a6=a3q3,
即2q3=16,
則q3=8,即q=2,
故答案為:2
點評:本題主要考查等比數(shù)列的公比的計算,根據(jù)條件建立方程公式是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
ax2+2ax+1
的定義域為R.
(1)求a的取值范圍.
(2)若函數(shù)的最小值為
2
2
,解關(guān)于x的不等式x2-x-a2-a<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12.
(1)求數(shù)列{an}的通項公式;
(2)令bn=
4
anan+1
,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
ax3+(b-
a-3
2
)x2+3x,其中a>0,b∈R.
(Ⅰ)當(dāng)b=-3時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a=3,且b<0時,
(i)若f(x)有兩個極值點x1,x2(x1<x2),求證:f(x1)<1;
(ii)若對任意的x∈[0,t],都有-1≤f(x)≤16成立,求正實數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z1=(a+1)+(a-1)i,z2=1+2ai,(a∈R,i是虛數(shù)單位).
(1)若復(fù)數(shù)z1-z2在復(fù)平面上對應(yīng)點落在直線y=x上,求實數(shù)a的值;
(2)若復(fù)數(shù)z1是實系數(shù)一元二次方程x2+x+m=0的根,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心在直線2x+y=0上,且圓C與直線x+y=1切于點M(2,-1),求圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,四邊形ABCD是平行四邊形,M,N分別是AB,PC的中點,
(1)求證:MN∥平面PAD;
(2)若PA=PC且PD=PB,求證平面PAC⊥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
a
x,0≤x≤a
1
1-a
(1-x),a<x≤1
,a為常數(shù)且a∈(0,1)
(1)當(dāng)a=
1
2
時,求f[f(
1
3
)];
(2)若x滿足f[f(x)]=x0,但f(x0)≠x0,則稱x0為f(x)的二階周期點,證明函數(shù)f(x)有且僅有兩個二階周期點,并求二階周期點x1,x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點A是點B(1,2.3)關(guān)于x軸對稱的點,點C是點D(2,-2.5)關(guān)于y軸對稱的點,則|AC|=
 

查看答案和解析>>

同步練習(xí)冊答案