高三某班有兩個(gè)數(shù)學(xué)課處興趣小組,第一組有2名男生,2名女生,第二組有3名男生,2名女生,現(xiàn)在班主任老師要從第一組選出1人,從第二組選出2人,請(qǐng)他們?cè)诎鄷?huì)上和全班同學(xué)分享學(xué)習(xí)心得.
(1)求選出的3人均是男生的概率;
(2)求選出的3人中有男生也有女生的概率.
考點(diǎn):古典概型及其概率計(jì)算公式
專題:概率與統(tǒng)計(jì)
分析:利用排列組合求出“從第一組選出1人,從第二組選出2人”的所有方法,
(1)然后找出選出的3人均是男生的方法種數(shù),直接利用古典概型的概率計(jì)算公式計(jì)算;
(2)找出選出的3人均是女生的方法種數(shù),利用互斥事件的概率計(jì)算公式計(jì)算.
解答: (Ⅰ)記第一組的2名男生為A1,A2,2名女生為a1,a2,第二組的3名男生為B1,B2,B3,2名女生為b1,b2
設(shè)“從第一組選出1人,從第二組選出2人”組成的基本事件空間為Ω,有
C
1
4
C
2
5
=40種
設(shè)“選出的3人均是男生”為事件A,則A={(A1,B1,B2),(A1,B1,B3),(A1,B2,B3),(A2,B1,B2),(A2,B1,B3),(A2,B2,B3)},共有6種.
∴P(A)=
6
40
=
3
20
,所以選出的3人均是男生的概率為
3
20
,
(Ⅱ)設(shè)“選出的3人中有男生也有女生”為事件B,設(shè)“都是女生”為事件C,
則C={(a1,b1,b2),(a2,b1,b2)},共有2種.P(C)=
2
40
=
1
20

故P(B)=1-P(A)-P(C)=1-
3
20
-
1
20
=
4
5

所以選出的3人中有男生也有女生的概率為
4
5
點(diǎn)評(píng):本題考查了列舉法計(jì)算基本事件數(shù)及事件發(fā)生的概率,解答此題的關(guān)鍵是列舉時(shí)做到不重不漏,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若(3x-1)7=a7x7+a6x6+…+a1x+a0,則a7+a6+…+a1的值為( 。
A、1B、129
C、128D、127

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的前n項(xiàng)和Sn=2n+m(m∈R).
(1)求m的值及{an}的通項(xiàng)公式;
(2)設(shè)bn=2log2an-13,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,求Tn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱柱ABCD-A1B1C1D1中,側(cè)棱AA1⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點(diǎn).
(Ⅰ)求證:B1C1⊥CE;
(Ⅱ)求二面角B1-CE-C1的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(2cosx,
2
cosx-1),
b
=(
3
sinx,
2
cosx+1),函數(shù)f(x)=
a
b
,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)將函數(shù)y=f(x)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)縮短到原來(lái)的
1
2
,把所得到的圖象再向左平移
π
6
單位,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在區(qū)間[0,
π
8
]
上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn為等差數(shù)列{an}的前n項(xiàng)和,Sn=12n-n2
(1)求|a1|+|a2|+|a3|;
(2)求|a1|+|a2|+|a3|+…+|a10|;
(3)求|a1|+|a2|+|a3|+…+|an|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一名箭手進(jìn)行射箭訓(xùn)練,箭手連續(xù)射2支箭,已知射手每只箭射中10環(huán)的概率是
1
4
,射中9環(huán)的概率是
1
4
,射中8環(huán)的概率是
1
2
,假設(shè)每次射箭結(jié)果互相獨(dú)立.
(1)求該射手兩次射中的總環(huán)數(shù)為18環(huán)的概率;
(2)設(shè)該箭手兩次射中的總環(huán)數(shù)為ζ,求ζ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在四棱錐P-ABCD中,底面四邊形ABCD是菱形,AC∩BD=O,△PAC是邊長(zhǎng)為2的等邊三角形,PB=PD=
6
,AP=4AF.
(1)求證:PO⊥底面ABCD;
(2)求多面體PBCDF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的公差不為0,a1=1且a1,a3,a9成等比數(shù)列.
(1)求通項(xiàng)公式an
(2)設(shè)bn=2 an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案