在△ABC中.角A,B,C所對(duì)的邊長分加為a,b,c.若△ABC的周長為
2
+1,且sinA+sinC=
2
sinB.
(1)求邊長b;
(2)若△ABC的面積為
1
6
sinB,求角B的度數(shù).
考點(diǎn):正弦定理,余弦定理
專題:解三角形
分析:(1)利用正弦定理把已知等式中的角的正弦換成邊,根據(jù)周長求得b的值.
(2)利用三角形面積公式求得ac的值,繼而利用配方法求得a2+c2的值,最后根據(jù)余弦定理公式求得cosB的值,進(jìn)而求得B.
解答: 解:(1)∵sinA+sinC=
2
sinB,
∴a+c=
2
b,
∵a+b+c=
2
+1,
2
+1-b=
2
b,b=1.
(2)S=
1
2
a•c•sinB=
1
6
sinB,
∴ac=
1
3
,
a2+c2=(a+c)2-2ac=2-
2
3
=
4
3

cosB=
a2+c2-b2
2ac
=
4
3
-1
2
3
=
1
2
,
∴B=60°.
點(diǎn)評(píng):本題主要考查了正弦定理和余弦定理的應(yīng)用.解三角形問題中常需要運(yùn)用正弦定理和余弦定理完成邊和角的問題的轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

自由下落的物體,從開始起通過連續(xù)的三段位移的時(shí)間之比是1:2:3,則這三段位移之比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,圓C:ρ=2
2
sin(θ+
π
4
)上到直線l:ρcosθ=2距離為1的點(diǎn)的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知 f(x)=2x+1,則 f(0)=(  )
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商場將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺(tái),為了配合國家“家電下鄉(xiāng)”政策的實(shí)施,商場決定采取適當(dāng)?shù)慕祪r(jià)措施,調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺(tái).
(1)假設(shè)每臺(tái)冰箱降價(jià)x元,商場每天銷售這種冰箱的利潤是y元,請(qǐng)寫出y與x之間的函數(shù)表達(dá)式;(不要求寫自變量的取值范圍)
(2)每臺(tái)冰箱降價(jià)多少元時(shí),商場每天銷售這種冰箱的利潤最高?最高利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x(x-a)(x-b),其中0<a<b.
(1)設(shè)函數(shù)y=f(x)在點(diǎn)A(s,f(s)),B(t,f(t))處取得極值,且s<t.求證:
①0<s<a<t<b;
②線段AB的中點(diǎn)C在曲線y=f(x)上;
(2)若a+b<2
2
,問:過原點(diǎn)且與曲線y=f(x)相切的兩條直線是否垂直,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線C的極坐標(biāo)方程為ρcos(θ-
π
3
)=
1
2
,以極點(diǎn)O為原點(diǎn),極軸Ox為x的非負(fù)半軸,保持單位長度不變建立直角坐標(biāo)系xOy.
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)直線l的參數(shù)方程為
x=-2+tcos60°
y=tsin60°
(t為參數(shù)).若C與l的交點(diǎn)為P,求點(diǎn)P與點(diǎn)A(-2,0)的距離|PA|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2011年2月始發(fā)生的利比亞內(nèi)戰(zhàn)引起了全球人民的關(guān)注,聯(lián)合國為此多次召開緊急會(huì)議討論應(yīng)對(duì)措施.在某次分組研討會(huì)上,某組有6名代表參加,A、B兩名代表來自亞洲,C、D兩名代表來自北美洲,E、F兩名代表來自非洲,小組討論后將隨機(jī)選出兩名代表發(fā)言.
(1)代表A不被選中的概率是多少?
(2)記選出的兩名代表中來自于北美洲或非洲的人數(shù)為X,求X的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:α∈(0,
π
2
),sinα=
3
5
求值:
(Ⅰ)tanα;
(Ⅱ)cos2α+sin(α+
π
2

查看答案和解析>>

同步練習(xí)冊(cè)答案