2.已知cos(-$\frac{π}{2}$+α)=-$\frac{4}{5}$,且α∈(π,$\frac{3π}{2}$),則tanα=$\frac{4}{3}$.

分析 利用誘導(dǎo)公式化簡(jiǎn)已知條件,利用同角三角函數(shù)的基本關(guān)系式求解即可.

解答 解:cos(-$\frac{π}{2}$+α)=cos($\frac{π}{2}-α$)=-$\frac{4}{5}$,且α∈(π,$\frac{3π}{2}$),
可得sinα=-$\frac{4}{5}$.cosα=$-\sqrt{1-{sin}^{2}α}$=-$\frac{3}{5}$,
tanα=$\frac{sinα}{cosα}$=$\frac{4}{3}$.
故答案為:$\frac{4}{3}$.

點(diǎn)評(píng) 本題考查誘導(dǎo)公式以及同角三角函數(shù)的基本關(guān)系式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,在圓柱EF中,底面圓的半徑為2,母線長(zhǎng)為6,$\widehat{AB}$和$\widehat{CD}$的長(zhǎng)均為所在圓的周長(zhǎng)的$\frac{1}{6}$,若沿著面ABCD將圓柱截開(kāi),試求所截得的體積較小的幾何體的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在平面直角坐標(biāo)系xoy中,橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,直線l:y=$\frac{1}{2}$x與橢圓E相交于A,B兩點(diǎn),AB=$4\sqrt{5}$,C,D是橢圓E上異于A,B兩點(diǎn),且直線AC,BD相交于點(diǎn)M,直線AD,BC相交于點(diǎn)N.
(1)求a,b的值;
(2)求證:直線MN的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知直線l經(jīng)過(guò)點(diǎn)A(1,3),求:
(1)直線l在兩坐標(biāo)軸上的截距相等的直線方程;
(2)直線l與兩坐標(biāo)軸的正半軸圍成三角形面積最小時(shí)的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1點(diǎn)的中點(diǎn),且AA1=AC=BC=$\frac{\sqrt{2}}{2}$AB.
(1)證明:BC1∥平面A1CD;
(2)求直線CE與平面A1CD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列命題中,正確命題的序號(hào)為( 。
A.命題p:?x∈R,使得x2-1≥0,命題q:?x∈R,使得x2-x-1≥0,則命題p∨¬q是假命題
B.非零向量$\overrightarrow{a}$,$\overrightarrow$,“$\overrightarrow{a}$•$\overrightarrow$>0”是“$\overrightarrow{a}$與$\overrightarrow$夾角是銳角”的充要條件
C.“兩直線2x-my-1=0與x+my-1=0垂直”是“$m=±\sqrt{2}$”的充要條件
D.“a=1”是“函數(shù)f(x)=x2+|x+a-1|(x∈R)為偶函數(shù)”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知等差數(shù)列{an}的首項(xiàng)a1=11,公差d=-2,則{an}的前n項(xiàng)和Sn的最大值為36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)非零向量$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,則θ∈($\frac{π}{2}$,π)是$\overrightarrow{a}$•$\overrightarrow$<0的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知全集U=R,A={x|-4≤x≤2},B={x|-1<x≤3},P={x|x≤0,或x≥$\frac{5}{2}$},Q={x|a-2<x<a+2}.
(1)求A∩B;
(2)求(∁UB)∪P;
(3)若A∩B⊆Q,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案