14.過點$P(-\sqrt{3},0)$作直線l與圓O:x2+y2=1交于A、B兩點,O為坐標(biāo)原點,設(shè)∠AOB=θ,且$θ∈(0,\frac{π}{2})$,當(dāng)△AOB的面積為$\frac{{\sqrt{3}}}{4}$時,直線l的斜率為(  )
A.$\frac{{\sqrt{3}}}{3}$B.$±\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$±\sqrt{3}$

分析 根據(jù)△AOB的面積為$\frac{{\sqrt{3}}}{4}$,求出θ=$\frac{π}{3}$,可得圓心到直線的距離為$\frac{\sqrt{3}}{2}$,即可求出直線l的斜率.

解答 解:∵△AOB的面積為$\frac{{\sqrt{3}}}{4}$,
∴$\frac{1}{2}×1×1×$sinθ=$\frac{{\sqrt{3}}}{4}$,
∴sinθ=$\frac{\sqrt{3}}{2}$,
∵$θ∈(0,\frac{π}{2})$,
∴θ=$\frac{π}{3}$,
∴圓心到直線的距離為$\frac{\sqrt{3}}{2}$,
設(shè)直線方程為y=k(x+$\sqrt{3}$),即kx-y+$\sqrt{3}$k=0,
∴$\frac{|\sqrt{3}k|}{\sqrt{{k}^{2}+1}}$=$\frac{\sqrt{3}}{2}$,
∴k=±$\frac{\sqrt{3}}{3}$,
故選:B.

點評 此題考查學(xué)生掌握直線與圓相交的性質(zhì),靈活運(yùn)用點到直線的距離公式化簡求值,考查了數(shù)形結(jié)合的數(shù)學(xué)思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f(x)=ax3+bx-$\frac{c}{x}+2$,若f(3)=5,則f(-3)的值為( 。
A.3B.-1C.7D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè) $f(x)=\left\{\begin{array}{l}x-2\\ f[{f(x+6)}]\end{array}\right.\begin{array}{l}({x≥10})\\({x<10})\end{array}$,則f(5)的值為11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{-{x^2}+2x,x>0}\\{0,x=0}\\{{x^2}+mx,x<0}\end{array}}\right.$為奇函數(shù).
(Ⅰ)求f(-1)以及實數(shù)m的值;
(Ⅱ)寫出函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)若f(a)=1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)f(x)=$\left\{\begin{array}{l}{(x+1)^{2},x<0}\\{lo{g}_{2}x,x≥0}\end{array}\right.$,則f[f(-3)]=( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若在△ABC中,∠A=60°,b=1,S△ABC=$\frac{{\sqrt{3}}}{2}$,則△ABC外接圓的半徑R=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是非零的不共線向量,$\overrightarrow{a}$=k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow$=$\overrightarrow{{e}_{1}}$+k2$\overrightarrow{{e}_{2}}$,且$\overrightarrow{a}$∥$\overrightarrow$,則k=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.己知函數(shù)f(x)=$\sqrt{-{x}^{2}+4x-3}$的定義域為A,函數(shù)y=log2(4-x)在區(qū)間[2,$\frac{7}{2}$]的值域為B,不等式(x-m)(x-2)≤0的解集為C.
(1)求A、B,A∪B;
(2)若B∩C=[0,n],求m,n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知集合A={x|-1≤x<2},B={x|y=$\sqrt{2x+1}$+$\sqrt{3-x}$},求:①A∩B,②A∪B,③(∁RA)∩(∁RB)

查看答案和解析>>

同步練習(xí)冊答案