6.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是非零的不共線向量,$\overrightarrow{a}$=k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow$=$\overrightarrow{{e}_{1}}$+k2$\overrightarrow{{e}_{2}}$,且$\overrightarrow{a}$∥$\overrightarrow$,則k=1.

分析 根據(jù)$\overrightarrow{a}$∥$\overrightarrow$,得到$\overrightarrow$=λ$\overrightarrow{a}$,建立方程關(guān)系進行求解即可.

解答 ∵$\overrightarrow{a}$=k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow$=$\overrightarrow{{e}_{1}}$+k2$\overrightarrow{{e}_{2}}$,且$\overrightarrow{a}$∥$\overrightarrow$,
∴設(shè)$\overrightarrow$=λ$\overrightarrow{a}$,
即$\overrightarrow{{e}_{1}}$+k2$\overrightarrow{{e}_{2}}$=λ(k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$)=λk$\overrightarrow{{e}_{1}}$+λ$\overrightarrow{{e}_{2}}$,
∵$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是非零的不共線向量,
∴$\left\{\begin{array}{l}{λk=1}\\{{k}^{2}=λ}\end{array}\right.$,則k3=1,
解得k=1,
故答案為:1

點評 本題主要考查向量平行的應(yīng)用,根據(jù)向量關(guān)系的等價條件建立方程關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.?dāng)?shù)列{an}是等比數(shù)列且an>0,a1=$\frac{1}{2}$,前n項和為Sn,S3+a3,S5+a5,S4+a4成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{nan}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.給出下列四個命題:
①函數(shù)f(x)=lnx-2+x在區(qū)間(1,e)上存在零點;
②要得到函數(shù)y=sinx的圖象,只需將函數(shù)$y=cos(x-\frac{π}{3})$的圖象向左平移$\frac{π}{6}$個單位;
③若m≥-1,則函數(shù)$y={log_{\frac{1}{2}}}({x^2}-2x-m)$的值城為R;
④“a=1”是“函數(shù)f(x)=$\frac{{a-{e^x}}}{{1+a{e^x}}}$在定義域上是奇函數(shù)”的充分不必要條件;
⑤已知{an}為等差數(shù)列,若$\frac{{{a_{11}}}}{{{a_{10}}}}$<-1,且它的前n項和Sn有最大值,那么當(dāng)Sn取得最小正值時,n=20.
其中正確命題的序號是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.過點$P(-\sqrt{3},0)$作直線l與圓O:x2+y2=1交于A、B兩點,O為坐標(biāo)原點,設(shè)∠AOB=θ,且$θ∈(0,\frac{π}{2})$,當(dāng)△AOB的面積為$\frac{{\sqrt{3}}}{4}$時,直線l的斜率為( 。
A.$\frac{{\sqrt{3}}}{3}$B.$±\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$±\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)直線x-3y+m=0(m≠0)與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)兩條漸近線分別交于點A、B,若點P(m,0)滿足($\overrightarrow{PA}$+$\overrightarrow{PB}$)⊥$\overrightarrow{AB}$,則該雙曲線的離心率是( 。
A.$\frac{\sqrt{5}}{4}$B.$\frac{\sqrt{5}}{2}$C.$\frac{5}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=x3+bx2+d在區(qū)間(0,2)內(nèi)為減函數(shù),且2是函數(shù)的一個零點,則f(1)的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知正方體ABCD-A1B1C1D1的棱長為2,E,F(xiàn)分別是AA1,CC1的中點,試判斷四邊形BED1F的形狀,并計算其面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某班50位同學(xué)周考數(shù)學(xué)成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100].
(1)求圖中[80,90)的矩形高的值,并估計這50人周考數(shù)學(xué)的平均成績;
(2)根據(jù)直方圖求出這50人成績的眾數(shù)和中位數(shù)(精確到0.1);
(3)從成績在[40,60)的學(xué)生中隨機選取2人,求這2人成績分別在[40,50)、[50,60)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若關(guān)于x的不等式3ax2+2x-1>0在(2,+∞)上有解,則實數(shù)a的取值范圍是[-$\frac{1}{3}$,+∞).

查看答案和解析>>

同步練習(xí)冊答案