已知數(shù)列{an}、{bn}的通項公式分別是an=a+(n-1)d,bn=a-(n-1)d,若
a1+a3+b4≤6
b3≥-8
a6+b5≥4
,則a5+b6的最大值為( 。
A、4B、-4C、2D、3
考點:等差數(shù)列的性質
專題:計算題,等差數(shù)列與等比數(shù)列
分析:由題意,
3a-d≤6
a-2d≥-8
2a+d≥4
,確定圍成的三角形的三個頂點坐標,即可求出a5+b6的最大值
解答: 解:由題意,
3a-d≤6
a-2d≥-8
2a+d≥4
,圍成的三角形的三個頂點坐標為(4,6),(0,4),(2,0),
∵a5+b6=2a-d,
∴在(2,0)處,a5+b6的最大值為4.
故選:A.
點評:本題考查等差數(shù)列的通項,考查線性規(guī)劃知識,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知空間四邊形ABCD,M、G分別是BC、CD的中點,連結AM、AG、MG,則
AB
+
1
2
BD
+
BC
)等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了得到函數(shù)y=sin(2x+
π
4
),x∈R的圖象,只需將函數(shù)y=sin2x,x∈R圖象上所有的點(  )
A、向左平行移動
π
8
個單位長度
B、向右平行移動
π
8
個單位長度
C、向左平行移動
π
4
個單位長度
D、向右平行移動
π
4
個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于以下四個函數(shù):①:y=x②:y=x2③:y=x3④:y=
1
x
,在區(qū)間[1,2]上函數(shù)的平均變化率最大的是( 。
A、①B、②C、③D、④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓錐的中截面(過圓錐高的中點且平行于底面的截面)把圓錐側面分成兩部分,這兩部分面積的比為( 。
A、1:1B、1:2
C、1:3D、1:4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三棱柱ABC-A1B1C1的側棱垂直于地面,且CA=CB=CC1,AC⊥BC,E,F(xiàn)分別是A1C1、B1C1的中點,則AE與CF所成角的余弦值等于( 。
A、
4
5
B、
12
13
C、
3
5
D、
5
13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知θ是鈍角,那么下列各值中sinθ-cosθ能取到的值是( 。
A、
4
3
B、
3
4
C、
5
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)z=i3-
2i
1+i
,在復平面上對應的點位于( 。
A、第一象限B、第二象限
C、第四象限D、第三象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某班有48名學生,其中男生32人,女生16人.李老師隨機地抽查8名學生的作業(yè),用X表示抽查到的女生人數(shù),
則E(X)的值為( 。
A、
16
3
B、
8
3
C、3
D、4

查看答案和解析>>

同步練習冊答案