證明:三個(gè)平面兩兩相交,有三條交線,如果其中有兩條交線平行,那么它們也和第三條交線平行.
考點(diǎn):平面的基本性質(zhì)及推論
專題:空間位置關(guān)系與距離
分析:寫出已知、求證,利用空間線線、線面間的位置關(guān)系進(jìn)行證明.
解答: 已知:α∩β=a,β∩γ=b,γ∩α=c,且a∥b,
求證:a∥b∥c.
證明:∵a∥b,b?γ,a不包含于γ,
∴a∥γ,又a?α,α∩γ=c,∴a∥c,
∴a∥b∥c.
點(diǎn)評(píng):本題考查線線平行的證明,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+x2
(1)若方程f(x)=t有三個(gè)不等的實(shí)根,求實(shí)數(shù)t的取值范圍;
(2)設(shè)函數(shù)g(x)=f(x)+mx,若g(x)的極值存在,求實(shí)數(shù)m的取值范圍;
(3)設(shè){an}是正數(shù)組成的數(shù)列,前n項(xiàng)和為Sn,其中a1=f′(1),若點(diǎn)(an,an+12-2an+1)(n∈N*)在函數(shù)y=f′(x)的圖象上,求證:點(diǎn)(n,Sn)也在y=f′(x)的圖象上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等差數(shù)列{an}的首項(xiàng)a1=1,公差d≠0,從{an}中抽取部分項(xiàng)按照原來的順序組成一個(gè)新數(shù)列{bn},已知{bn}為等比數(shù)列,且b1=a2,b2=a5,b3=a14
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)記數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{bn}的前n項(xiàng)和為Tn,若bm=ak,求Sk-Tm,(結(jié)果用只含m的式子表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知g(x-1)=2x+6,求g(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1是橢圓C1
y2
a2
+
x2
b2
=1(a>b>0)與拋物線C2:x2=4y共同的焦點(diǎn),M是C1與C2在第二象限的交點(diǎn),且|MF1|=
5
3

(1)試求橢圓C1的方程;
(2)已知點(diǎn)P是橢圓C1上的動(dòng)點(diǎn),GH是圓x2+(y+1)2=1的直徑,試求
PG
PH
的最大值;
(3)與圓x2+(y+1)2=1相切的直線l:y=k(x+t)(t≠0)交橢圓于A、B兩點(diǎn),若橢圓上的點(diǎn)P滿足
OA
+
OB
OP
,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sin(
πx
3
-
π
3
﹚-1.
(1)求函數(shù)最小正周期及單調(diào)遞增區(qū)間;
(2)若函數(shù)y=g(x)與y=f(x)的圖象關(guān)于直線x=2對(duì)稱,求當(dāng)x∈[0,1]時(shí),函數(shù)y=g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)镽,且對(duì)任意的實(shí)數(shù)x滿足f(2+x)=f(2-x),若x≥2時(shí),f(x)=2x
(1)求f(0),f(-1)的值,并求f(x)的解析式.
(2)當(dāng)x∈[-1,t],求函數(shù)f(x)的最大值.
(3)解關(guān)于x的不等式f(x+3)>f(3x-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-4mx+2m+6=0,x∈R},若A∩R≠∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程x2-px+6=0的解集為M,方程x2+6x-q=0的解集為N,且M∪N={-8,2,3},則p+q=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案