【題目】市政府為了促進(jìn)低碳環(huán)保的出行方式,從全市在冊的50000輛電動(dòng)車中隨機(jī)抽取100輛,委托專業(yè)機(jī)構(gòu)免費(fèi)為它們進(jìn)行電池性能檢測.電池性能分為需要更換、尚能使用、較好、良好四個(gè)等級,并分成電動(dòng)自行車和電動(dòng)汽車兩個(gè)群體分別進(jìn)行統(tǒng)計(jì),樣本分布如下圖.
(1)從電池性能較好的電動(dòng)車中,采用分層抽樣的方法隨機(jī)抽取了9輛,求再從這9輛電動(dòng)車中隨機(jī)抽取2輛,至少有1輛為電動(dòng)汽車的概率;
(2)為提高市民對電動(dòng)車的使用熱情,市政府準(zhǔn)備為電動(dòng)車車主一次性發(fā)放補(bǔ)助,標(biāo)準(zhǔn)如下:
①電動(dòng)自行車每輛補(bǔ)助300元;
②電動(dòng)汽車每輛補(bǔ)助500元;
③對電池需要更換的電動(dòng)車每輛額外補(bǔ)助400元.
利用樣本估計(jì)總體,試估計(jì)市政府執(zhí)行此方案的預(yù)算(單位:萬元).
【答案】(1);(2)2080
【解析】
(1) 根據(jù)分層抽樣的原理,電動(dòng)自行車應(yīng)抽取(輛),電動(dòng)汽車應(yīng)抽取(輛),由古典概型以及對立事件概率公式可得,所求概率;(2)設(shè)電動(dòng)車車主能得到的補(bǔ)助為元,則可取,,,,結(jié)合組合知識,利用古典概型概率公式,求出各隨機(jī)變量對應(yīng)的概率,從而可得分布列,進(jìn)而利用期望公式可得的數(shù)學(xué)期望.
(1)根據(jù)分層抽樣的原理,電動(dòng)自行車應(yīng)抽取(輛),
電動(dòng)汽車應(yīng)抽取(輛),
則所求概率.
(2)設(shè)電動(dòng)車車主能得到的補(bǔ)助為元,則可取,,,.
,,,,其分布列如下:
300 | 500 | 700 | 900 | |
電動(dòng)車車主得到的補(bǔ)助的期望 ,
則估計(jì)市政府執(zhí)行此方案的預(yù)算為元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若一條直線與一個(gè)平面垂直,則稱此直線與平面構(gòu)成一個(gè)“正交線面對”.那么在一個(gè)正方體中,由兩個(gè)頂點(diǎn)確定的直線與含有四個(gè)頂點(diǎn)的平面構(gòu)成的“正交線面對”的個(gè)數(shù)是( )
A. 48 B. 36 C. 24 D. 18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好體育,得到表:
參照附表,得到的正確結(jié)論是
附:由公式算得:
附表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
1.323 | 2.702 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
A. 有以上的把握認(rèn)為“愛好體育運(yùn)動(dòng)與性別有關(guān)”
B. 有以上的把握認(rèn)為“愛好體育運(yùn)動(dòng)與性別無關(guān)”
C. 在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為“愛好體育運(yùn)動(dòng)與性別有關(guān)”
D. 在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為“愛好體育運(yùn)動(dòng)與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在長方體中,寫出所有
(1)與直線AB平行的直線,并用“∥”表示;
(2)與直線異面的直線;
(3)與直線AB平行的平面,并用合適的符號表示;
(4)與平面平行的平面,并用合適的符號表示;
(5)與直線AD垂直的平面,并用合適的符號表示.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐(如圖1)的平面展開圖(如圖2)中,四邊形為邊長等于的正方形,和均為正三角形,在三棱錐中:
(1)證明:平面平面;
(2)若點(diǎn)在棱上運(yùn)動(dòng),當(dāng)直線與平面所成的角最大時(shí),求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分別是BC,BB1,A1D的中點(diǎn).
(1)證明:MN∥平面C1DE;
(2)求AM與平面A1MD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)在高二下學(xué)期開設(shè)四門數(shù)學(xué)選修課,分別為《數(shù)學(xué)史選講》.《球面上的幾何》.《對稱與群》.《矩陣與變換》.現(xiàn)有甲.乙.丙.丁四位同學(xué)從這四門選修課程中選修一門,且這四位同學(xué)選修的課程互不相同,下面關(guān)于他們選課的一些信息:①甲同學(xué)和丙同學(xué)均不選《球面上的幾何》,也不選《對稱與群》:②乙同學(xué)不選《對稱與群》,也不選《數(shù)學(xué)史選講》:③如果甲同學(xué)不選《數(shù)學(xué)史選講》,那么丁同學(xué)就不選《對稱與群》.若這些信息都是正確的,則丙同學(xué)選修的課程是( 。
A. 《數(shù)學(xué)史選講》B. 《球面上的幾何》C. 《對稱與群》D. 《矩陣與變換》
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com