14.扇形AOB的周長為8cm.,它的面積為3cm2,求圓心角的大。

分析 根據(jù)題意設(shè)出扇形的弧長與半徑,通過扇形的周長與面積,即可求出扇形的弧長與半徑,進而根據(jù)公式α=$\frac{l}{r}$求出扇形圓心角的弧度數(shù).

解答 解:設(shè)扇形的弧長為:l,半徑為r,所以2r+l=8,
因為S扇形=$\frac{1}{2}$lr=3,
所以解得:r=1,l=6或者r=3,l=2
所以扇形的圓心角的弧度數(shù)是:$\frac{6}{1}$=6或者$\frac{2}{3}$.

點評 本題主要考查扇形的周長與扇形的面積公式的應(yīng)用,以及考查學生的計算能力,此題屬于基礎(chǔ)題型.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知四棱錐P-ABCD中,四邊形ABCD是邊長為2的菱形,AC交BD于F,E為PA的中點,PC=3,且PC⊥平面ABCD.
(1)求證:平面EBD⊥平面ABCD;
(2)若三棱錐P-BCF的體積為2$\sqrt{3}$,求點E到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖1所示,在邊長為12的正方形AA′A′1A1中,點B,C在線段AA′上,且AB=3,BC=4,作BB1∥AA1,分別交A1A1′、AA1′于點B1、P,作CC1∥AA1,分別交A1A1′、AA1′于點C1、Q,將該正方形沿BB1、CC1折疊,使得$A'{A_1}^′$與AA1重合,構(gòu)成如圖2所示的三棱柱ABC-A1B1C1

(1)在三棱柱ABC-A1B1C1中,求證:AB⊥平面BCC1B1;
(2)求平面APQ將三棱柱ABC-A1B1C1分成上、下兩部分幾何體的體積之比;
(3)試判斷直線AQ是否與平面A1C1P平行,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知數(shù)列{an}滿足a1=1,an+1=2an(n∈N*),則an=2n-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下列各進制數(shù)中,最小的是(  )
A.85(9)B.210(6)C.1000(4)D.111 111(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知角α終邊經(jīng)過點 P(-5,-12),則 tanα 的值是( 。
A.$\frac{12}{5}$B.-$\frac{12}{5}$C.$\frac{5}{12}$D.-$\frac{5}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若集合 M={1,2,4},N={1,4,6},則M∩N等于( 。
A.{1,4}B.{1,4,6}C.{2,4,6}D.{1,2,4,6}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)y=loga(x+c)(a>0且a≠1,a,c為常數(shù))的圖象如圖,則下列結(jié)論正確的是(  )
A.a>0,c>1B.a>1,0<c<1C.0<a<1,0<c<1D.0<a<1,c>1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知sinθ,sinα,cosθ為等差數(shù)列,sinθ,sinβ,cosθ為等比數(shù)列,則cos2α-$\frac{1}{2}$cos2β=0.

查看答案和解析>>

同步練習冊答案