11.若直線y=x+b與曲線x=$\sqrt{1-{y^2}}$恰有一個公共點,則b的取值范圍是( 。
A.$[{-\sqrt{2},\sqrt{2}}]$B.$[{-1,\sqrt{2}}]$C.$(-1,1]∪\{\sqrt{2}\}$D.$(-1,1]∪\{-\sqrt{2}\}$

分析 曲線x=$\sqrt{1-{y^2}}$即 x2+y2=1(x≥0)表示一個半徑為1的半圓,如圖,數(shù)形結(jié)合求得當直線y=x+b與曲線x=$\sqrt{1-{y^2}}$恰有一個公共點時b的取值范圍.

解答 解:曲線x=$\sqrt{1-{y^2}}$即 x2+y2=1(x≥0)表示一個半徑為1的半圓,如圖所示.
當直線y=x+b經(jīng)過點A(0,1)時,求得b=1,
當直線y=x+b經(jīng)過點B(1,0)時,求得b=-1,
當直線和半圓相切于點D時,由圓心O到直線y=x+b的距離等于半徑,
可得$\frac{|0-0+b|}{\sqrt{2}}$=1,求得b=-$\sqrt{2}$,或b=$\sqrt{2}$(舍去).
故當直線y=x+b與曲線x=$\sqrt{1-{y^2}}$恰有一個公共點時b的取值范圍是-1<b≤1或b=-$\sqrt{2}$,
故選:D.

點評 本題主要考查了直線與圓相交的性質(zhì).對于此類問題除了用聯(lián)立方程轉(zhuǎn)化為方程的根的問題之外,也可用數(shù)形結(jié)合的方法較為直觀,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

1.下列判斷正確的是( 。
A.函數(shù)f(x)=1既是奇函數(shù)又是偶函數(shù)B.函數(shù)f(x)=(1-x)$\sqrt{\frac{1+x}{1-x}}$是偶函數(shù)
C.函數(shù)f(x)=$\frac{{x}^{2}-2x}{x-2}$是奇函數(shù)D.函數(shù)f(x)=x+$\sqrt{{x}^{2}-1}$是非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若復數(shù)(a2-1)+(a-1)i是純虛數(shù),則實數(shù)a的值為( 。
A.1B.0C.1或-1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知f(x)=$\left\{\begin{array}{l}(2a-1)x+3a,x<1\\{a^x},x≥1\end{array}$滿足對任意x1≠x2都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$<0成立,那么a的取值范圍是( 。
A.(0,1)B.$(0,\frac{1}{2})$C.$[\frac{1}{4},\frac{1}{2})$D.$[\frac{1}{4},1)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.對于函數(shù)f(x)=$\frac{{{2^x}+a}}{{{2^x}-1}}$,
(1)求函數(shù)的定義域;       
(2)當a為何值時,f(x)為奇函數(shù);
(3)用定義證明(2)中的函數(shù)在(0,+∞)上是單調(diào)遞減的.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知圓(x-1)2+(y+1)2=16的一條直徑恰好經(jīng)過直線x-2y+3=0被圓所截弦的中點,則該直徑所在直線的方程為2x+y-1=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知數(shù)列{an}滿足a1=1,an+1=$\frac{1}{2{a}_{n}+1}$(n∈N*).
(1)證明:數(shù)列{|an-$\frac{1}{2}$|}為單調(diào)遞減數(shù)列;
(2)記Sn為數(shù)列{|an+1-an|}的前n項和,證明:Sn<$\frac{5}{3}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)$f(x)=2sin?xcos?x-2\sqrt{3}{cos^2}?x+\sqrt{3}({?>0})$,若函數(shù)f(x)的圖象與直線y=a(a為常數(shù))相切,并且切點的橫坐標依次成公差為π的等差數(shù)列.
(1)求f(x)的表達式及a的值;
(2)將函數(shù)f(x)的圖象向左平移$\frac{π}{3}$個單位,再向上平移1個單位,得到函數(shù)y=g(x),求其單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.求非零常數(shù)a,b,使得$\underset{lim}{x→0}$$\frac{2arctanx-ln\frac{1+x}{1-x}}{{x}^{a}}$=b.

查看答案和解析>>

同步練習冊答案