若方程
x2
2-k
+
y2
k-1
=1表示的圖形是雙曲線,則k的取值范圍為( 。
A、k>2或k<1
B、1<k<2
C、-2<k<1
D、-1<k<2
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)雙曲線的標(biāo)準(zhǔn)方程,可得只需2-k與k-1只需異號(hào)即可,則可得不等式(2-k)(k-1)<0,進(jìn)而可得答案.
解答: 解:由題意知(2-k)(k-1)<0,
解得k<1或k>2.
故選:A.
點(diǎn)評(píng):本題主要考查了雙曲線的定義,屬基礎(chǔ)題;解答的關(guān)鍵是根據(jù)雙曲線的標(biāo)準(zhǔn)方程建立不等關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
1
3
x3-x
的單調(diào)遞減區(qū)間為( 。
A、[-1,1]
B、[0,1]
C、[1,+∞)
D、[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知2x+y=0是雙曲線x2-λy2=1的一條漸近線,則雙曲線的離心率是( 。
A、
2
B、
3
C、
5
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某人連續(xù)射擊8次,命中4次且恰好有3次連在一起的結(jié)果有( 。
A、12種B、6種
C、20種D、10種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下公式中:①an=
2
2
[1-(-1)n];②an=
1-(-1)n
;③an=
2
,(n為奇數(shù))
0,(n為偶數(shù))
,可以作為數(shù)列
2
,0,
2
,0,
2
,0,…通項(xiàng)公式的是( 。
A、①②B、②③C、①③D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下命題:
①?x∈R,有x4>x2;
②?α∈R,使得sin3α=3sinα;
③?a∈R,對(duì)?x∈R,使x2+2x+a<0.
其中正確的有( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若p是q的逆否命題,S是q的否命題,則p是S的( 。
A、逆命題B、原命題
C、否命題D、逆否命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

學(xué)校舉行定點(diǎn)投籃比賽,規(guī)定每人投籃4次,投中一球得2分,沒(méi)有投中得0分,假設(shè)每次投籃投中與否是相互獨(dú)立的.已知小明每次投籃投中的概率都是
1
3
;小強(qiáng)每次投籃投中的概率都是p(0<p<1).
(1)求小明在投籃過(guò)程中直到第三次才投中的概率;
(2)求小明在4次投籃后的總得分ξ的分布列和期望;
(3)小強(qiáng)投籃4次,投中的次數(shù)為X,若期望E(X)=1,求p和X的方差V(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為4的正方形,△PAD是正三角形,E、F、G分別是PD、PC、BC的中點(diǎn).
(1)求證:直線EG∥平面PAB;
(2)若平面PAD⊥平面ABCD,M是線段CD上任一點(diǎn),求三棱錐M-EFG的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案