已知P是△ABC所在平面外一點,PA⊥PC,PB⊥PC,PA⊥PB.求證:P在面ABC上的射影H是△ABC的垂心.
考點:直線與平面垂直的判定
專題:空間位置關(guān)系與距離
分析:利用向量的數(shù)量積公式,證明
AH
BC
=0,
BH
AC
=0,
CH
AB
=0,即可得到結(jié)論.
解答: 證明:如圖所示,連結(jié)AH、BH、CH,
∵PA⊥PC,PB⊥PC,PA⊥PB
PA
PC
=0,
PB
PC
=0,
PA
PB
=0,
又∵PH⊥面ABC,
PH
BC
=0,
PH
AB
=0,
PH
AC
=0,
AH
BC
=(
PH
-
PA
)•
BC
=
PH
BC
-
PA
BC
=0-
PA
PC
-
PB
)=0-
PA
PC
+
PA
PB
=0.
同理可證:
BH
AC
=0,
CH
AB
=0.
∴H是△ABC的垂心.
點評:本題考查線面垂直、線線垂直,考查向量知識的運用,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

平面上的兩個向量
OA
,
OB
滿足
|OA|
=a,
|OB|
=b,且
OA
OB
,a2+b2=4.向量:
OP
=x
OA
+y
OB
(x,y∈R),且a2(x-
1
2
)2+b2(y-
1
2
)2
=1.
(1)如果點M為線段AB的中點,求證:
MP
=(x-
1
2
)
OA
+(y-
1
2
)
OB
;
(2)求丨
OP
丨的最大值,并求此時四邊形OAPB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某次市教學(xué)質(zhì)量檢測,甲、乙、丙三科考試成績的直方圖如圖所示(由于人數(shù)眾多,成績分布的直方圖可視為正態(tài)分布),則由圖中曲線可得下列說法中正確的一個是(  )
A、甲科總體的標(biāo)準(zhǔn)差最小
B、乙科總體的標(biāo)準(zhǔn)差及平均數(shù)都居中
C、丙科總體的平均數(shù)最小
D、甲、乙、丙的總體的平均數(shù)不相同

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的二次函數(shù)f(x)的最小值為0,且有f(1+x)=f(1-x),直線g(x)=4(x-1)的圖象被f(x)的圖象截得的弦長為4
17
,數(shù)列{an}滿足a=2,(an+1-an)•g(an)+f(an)=0(n∈N*).
(1)求函數(shù)f(x)的解析式;
(2)求數(shù)列{an}的通項公式;
(3)設(shè)bn=3f(an)-g(an),求數(shù)列的{bn}的最值及相應(yīng)的n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(
1
2
)x+
3
4
,x≥2
log2x,0<x<2
,若函數(shù)g(x)=f(x)-k有兩個不同的零點,則實數(shù)k的取值范圍是( 。
A、(
3
4
,1)
B、(0,
3
4
C、(-∞,1)
D、(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把函數(shù)y=log2(x-2)+3的圖象按向量
a
平移,得到函數(shù)y=log2(x+1)-1的圖象,則
a
等于( 。
A、(-3,-4)
B、(3,4)
C、(-3,4)
D、(3,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在邊長為a的正△ABC中,AD⊥BC于D,沿AD折成二面角B-AD-C后,BC=
1
2
a,這時二面角B-AD-C的大小為( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=
3
x
被圓x2+y2-2x=0所截得的弦長是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,正視圖為正方形,俯視圖為半圓,側(cè)視圖為矩形,則其表面積為
 

查看答案和解析>>

同步練習(xí)冊答案