若三個(gè)數(shù)5+2
6
,m,5-2
6
成等比數(shù)列,則m=
 
考點(diǎn):等比數(shù)列,等比數(shù)列的通項(xiàng)公式
專題:等差數(shù)列與等比數(shù)列
分析:由題意可得m2=(5+2
6
)(5-2
6
),解方程可得.
解答: 解:∵三個(gè)數(shù)5+2
6
,m,5-2
6
成等比數(shù)列,
∴m2=(5+2
6
)(5-2
6
)=1,
解得m=±1
故答案為:±1
點(diǎn)評:本題考查等比數(shù)列的定義,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校高一,高二,高三年級的學(xué)生人數(shù)之比是2:3:4,現(xiàn)用分層抽樣的方法從該校高中三個(gè)年級的學(xué)生中抽取容量為36的樣本,則應(yīng)從高二年級抽取
 
名學(xué)生.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用集合表示平面直角坐標(biāo)中除去點(diǎn)(1,2)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足an+1=
2an(0≤an
1
2
)
2an-1(
1
2
an<1)
若a1=
6
7
,則a2014的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的有
 

①已知A,B是橢圓
x2
3
+
y2
4
=1的左右兩個(gè)頂點(diǎn),P是該橢圓上異于A,B的任一點(diǎn),則KAP•KBP=-
3
4

②已知雙曲線x2-
y2
3
=1的左頂點(diǎn)為A1,右焦點(diǎn)為F2,P為雙曲線右支上一點(diǎn),則
PA1
PF2
的最小值為-2.
③若拋物線C:x2=4y的焦點(diǎn)為F,拋物線上一點(diǎn)Q(2,1)和拋物線內(nèi)一點(diǎn)R(2,m)(m>1),過點(diǎn)Q作拋物線的切線l1,直線l2過點(diǎn)Q且與l1垂直,則l2平分∠RQF;
④已知函數(shù)f(x)是定義在R上的奇函數(shù),f(1)=0,xf′(x)-f(x)>0(x>0),則不等式f(x)>0的解集是(-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x3-3x2+a的極大值為2,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

假設(shè)關(guān)于某種設(shè)備的使用年限x(年)與所支出的維修費(fèi)用y(萬元)有如下統(tǒng)計(jì)資料:
x 2 3 4 5 6
y 2.2 3.8 5.5 6.5 7.0
估計(jì)使用年限為10年時(shí),維修費(fèi)用約是多?(
b
=1.23)( 。
A、12.38
B、13.38
C、11.48
D、12.98

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i是虛數(shù)單位,復(fù)數(shù)
3-i
1+i
的虛部是( 。
A、2iB、-2iC、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式(x+3)(1-x)≥0的解集為( 。
A、{x|x≥3或x≤-1}
B、{x|-1≤x≤3}
C、{x|-3≤x≤1}
D、{x|x≤-3或x≥1}

查看答案和解析>>

同步練習(xí)冊答案