設(shè)a、b、m、n∈R,且a2+b2=5,ma+nb=5,則m2+n2的最小值為
 
考點(diǎn):基本不等式
專題:不等式
分析:利用柯西不等式即可得出.
解答: 解:由柯西不等式可得:(m2+n2)(a2+b2)≥(ma+nb)2
m2+n2
52
5
=5,當(dāng)且僅當(dāng)na=mb時(shí)取等號.
∴m2+n2的最小值為5.
點(diǎn)評:本題考查了柯西不等式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(θ+
π
4
)=
3
5
,θ為鈍角,則cosθ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|z1|=|z2|=|z3|=1,則|
z1z2+z2z3+z3z1
z1+z2+z3
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面內(nèi)有兩定點(diǎn)A、B及動點(diǎn)P,設(shè)命題甲是:“|PA|+|PB|是定值”,命題乙是:“點(diǎn)P的軌跡是以A、B為焦點(diǎn)的橢圓”,那么甲是乙的
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線ax+by-1=0(a>0,b>0)過曲線y=1+sinπx(0<x<2)的對稱中心,則
1
a
+
2
b
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2為雙曲線C:
x2
4
-y2=1的左、右焦點(diǎn),點(diǎn)P在C上,∠F1PF2=60°,則P到x軸的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1
log
1
3
(2x-1)
的定義域?yàn)?div id="dcttaig" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

分形幾何學(xué)是美籍法國數(shù)學(xué)家伯努瓦•B•曼德爾布羅特(Benoit B.Mandelbrot)在20世紀(jì)70年代創(chuàng)立的一門新學(xué)科,它的創(chuàng)立,為解決傳統(tǒng)學(xué)科眾多領(lǐng)域難題提供了全新的思路.如圖是按照規(guī)則:1個(gè)空心圓點(diǎn)到下一行僅生長出1個(gè)實(shí)心圓點(diǎn),1個(gè)實(shí)心圓點(diǎn)到下一行生長出1個(gè)實(shí)心圓點(diǎn)和1個(gè)空心圓點(diǎn).所形成的一個(gè)樹形圖,則第11行的實(shí)心圓點(diǎn)的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出四個(gè)函數(shù)圖象分別滿足:
①f(x+y)=f(x)+f(y);
②g(x+y)=g(x)•g(y);
③u(x•y)=u(x)+u(y);
④v(x•y)=v(x)•v(y).
與如圖函數(shù)圖象對應(yīng)的是(  )
A、①-a,②-b,③-c,④-d
B、①-b,②-c,③-a,④-d
C、①-a,②-c,③-b,④-d
D、①-d,②-a,③-b,④-c

查看答案和解析>>

同步練習(xí)冊答案