【題目】如圖,地到火車(chē)站共有兩條路徑,據(jù)統(tǒng)計(jì)兩條路徑所用的時(shí)間互不影響,所用時(shí)間在各時(shí)間段內(nèi)的的頻率如下表:
時(shí)間(分鐘) | |||||
的頻率 | |||||
的頻率 |
現(xiàn)甲、乙兩人分別有分鐘和分鐘時(shí)間用于趕往火車(chē)站.
(1)為了盡最大可能在各自允許的時(shí)間內(nèi)趕到火車(chē)站,甲和乙應(yīng)如何選擇各自的路徑?
(2)用表示甲、乙兩人中在允許的時(shí)間內(nèi)趕到火車(chē)站的人數(shù),針對(duì)(1)的選擇方案,求的分布列和數(shù)學(xué)期望.
【答案】(1)甲應(yīng)選擇路徑,乙應(yīng)選擇路徑;(2)分布列見(jiàn)解析,.
【解析】
(1)用表示事件“甲選擇路徑時(shí),分鐘內(nèi)趕到火車(chē)站”,表示事件“乙選擇路徑時(shí),分鐘內(nèi)趕到火車(chē)站”,、,計(jì)算出、、、,并比較、的大小,、的大小,由此可得出結(jié)論;
(2)用、分別表示針對(duì)(1)的選擇方案,甲,乙在各自的時(shí)間內(nèi)搞到火車(chē)站,由(1)知,,可知隨機(jī)變量的可能取值有、、,計(jì)算出隨機(jī)變量在不同取值下的概率,可得出隨機(jī)變量的分布列,進(jìn)而可求得的數(shù)學(xué)期望.
(1)用表示事件“甲選擇路徑時(shí),分鐘內(nèi)趕到火車(chē)站”,表示事件“乙選擇路徑時(shí),分鐘內(nèi)趕到火車(chē)站”,
用頻率估計(jì)相應(yīng)的概率,則有:,,
,所以甲應(yīng)選擇路徑;
,,
,所以乙應(yīng)選擇路徑;
(2)用、分別表示針對(duì)(1)的選擇方案,甲,乙在各自的時(shí)間內(nèi)搞到火車(chē)站,
由(1)知,,且、相互獨(dú)立.
由題意可知,隨機(jī)變量的取值是、、,
,
,
.
所以的分布列如下表所示:
所以,隨機(jī)變量的數(shù)學(xué)期望為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位組織“學(xué)習(xí)強(qiáng)國(guó)”知識(shí)競(jìng)賽,選手從6道備選題中隨機(jī)抽取3道題.規(guī)定至少答對(duì)其中的2道題才能晉級(jí).甲選手只能答對(duì)其中的4道題。
(1)求甲選手能晉級(jí)的概率;
(2)若乙選手每題能答對(duì)的概率都是,且每題答對(duì)與否互不影響,用數(shù)學(xué)期望分析比較甲、乙兩選手的答題水平。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)),是的導(dǎo)函數(shù).
(Ⅰ)當(dāng)時(shí),求證;
(Ⅱ)是否存在正整數(shù),使得對(duì)一切恒成立?若存在,求出的最大值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年全國(guó)數(shù)學(xué)奧賽試行改革:在高二一年中舉行5次全區(qū)競(jìng)賽,學(xué)生如果其中2次成績(jī)達(dá)全區(qū)前20名即可進(jìn)入省隊(duì)培訓(xùn),不用參加其余的競(jìng)賽,而每個(gè)學(xué)生最多也只能參加5次競(jìng)賽.規(guī)定:若前4次競(jìng)賽成績(jī)都沒(méi)有達(dá)全區(qū)前20名,則第5次不能參加競(jìng)賽.假設(shè)某學(xué)生每次成績(jī)達(dá)全區(qū)前20名的概率都是,每次競(jìng)賽成績(jī)達(dá)全區(qū)前20名與否互相獨(dú)立.
(1)求該學(xué)生進(jìn)入省隊(duì)的概率.
(2)如果該學(xué)生進(jìn)入省隊(duì)或參加完5次競(jìng)賽就結(jié)束,記該學(xué)生參加競(jìng)賽的次數(shù)為,求的分布列及的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于兩點(diǎn),且設(shè)定點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三角形面積為,,,為三角形三邊長(zhǎng),為三角形內(nèi)切圓半徑,利用類(lèi)比推理,可以得出四面體的體積為( )
A.
B.
C. (為四面體的高)
D. (其中,,,分別為四面體四個(gè)面的面積,為四面體內(nèi)切球的半徑,設(shè)四面體的內(nèi)切球的球心為,則球心到四個(gè)面的距離都是)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】不期而至的新冠肺炎疫情,牽動(dòng)了億萬(wàn)國(guó)人的心,全國(guó)各地紛紛捐贈(zèng)物資馳援武漢.有一批捐贈(zèng)物資需要通過(guò)輪船沿長(zhǎng)江運(yùn)送至武漢,已知該運(yùn)送物資的輪船在航行中每小時(shí)的燃料費(fèi)和它的速度的立方成正比,已知當(dāng)速度為10海里/時(shí)時(shí),燃料費(fèi)是6元/時(shí),而其他與速度無(wú)關(guān)的費(fèi)用是96元/時(shí),問(wèn)當(dāng)輪船的速度是多少時(shí),航行1海里所需的費(fèi)用總和最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),其右焦點(diǎn)為,以坐標(biāo)原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)經(jīng)過(guò)點(diǎn)的直線,分別交橢圓于,及,四點(diǎn),且,探究:是否存在常數(shù),使得.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com