在平面直角坐標(biāo)系中畫(huà)出y=|x2+2x-3|的圖象,并討論關(guān)于x的方程|x2+2x-3|=a的實(shí)根的個(gè)數(shù).
考點(diǎn):根的存在性及根的個(gè)數(shù)判斷,函數(shù)圖象的作法
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)f(x)=|x2+2x-3|,g(x)=a,作出兩個(gè)函數(shù)的圖象,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:設(shè)f(x)=|x2+2x-3|,g(x)=a,分別作出f(x)與g(x)的圖象,
由圖知:當(dāng)a<0時(shí),方程無(wú)實(shí)根;                          
當(dāng)a=0時(shí),方程有兩個(gè)實(shí)根;                               
當(dāng)0<a<4時(shí),方程有4個(gè)根;                              
當(dāng)a=4時(shí),方程有3個(gè)實(shí)根;                                
當(dāng)a>4時(shí),方程有2個(gè)實(shí)根.                               )
點(diǎn)評(píng):本題主要考查函數(shù)方程根的個(gè)數(shù)的判斷,根據(jù)函數(shù)和方程之間的關(guān)系,轉(zhuǎn)化為兩個(gè)函數(shù)的交點(diǎn)個(gè)數(shù)問(wèn)題是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)計(jì)算題,求[125 
2
3
+(
1
16
 -
1
2
+343 
1
3
] 
1
2
+(
1
3
0-ln
e

(Ⅱ)解方程:lg(10x)+2=4lgx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=axsinx+cosx,且f(x)在x=
π
4
處的切線斜率為
2
π
8

(1)求a的值,并討論f(x)在[-π,π]上的單調(diào)性;
(2)設(shè)函數(shù)g(x)=ln(mx+1)+
1-x
1+x
,x≥0,其中m>0,若對(duì)任意的x1∈[0,+∞)總存在x2∈[0,
π
2
],使得g(x1)≥f(x2)成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知g(x)=ex-x.
(Ⅰ)求g(x)的最小值;
(Ⅱ)若存在x∈(0,+∞),使不等式
2x-m
g(x)
>x成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=2sin(2x+
π
3

(1)寫(xiě)出它的振幅、周期和初相;
(2)用五點(diǎn)法作出它的一個(gè)周期的圖象;
(3)說(shuō)明y=2sin(2x+
π
3
)的圖象可由y=sinx的圖象經(jīng)過(guò)怎樣的變換而得到?
(4)求出函數(shù)的單調(diào)增區(qū)間;
(5)求出函數(shù)圖象對(duì)稱(chēng)軸方程和對(duì)稱(chēng)中心坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)平面向量
am
=(m,1),
bn
=(2,n),其中m,n∈{1,2,3,4}.
(1)請(qǐng)列出有序數(shù)組(m,n)的所有可能結(jié)果;
(2)若“使得
am
⊥(
am
-
bn
)成立的(m,n)”為事件A,求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=x3-3x2+2在區(qū)間[-1,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)y=f(x)(x∈R)在[0,+∞)為增函數(shù),則滿足不等式f(x)+f(2x+1)>0的x的集合為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱柱ABC-A1B1C1的底面是邊長(zhǎng)為2的正三角形,AA1⊥面ABC,高為5,一質(zhì)點(diǎn)自點(diǎn)A出發(fā),沿著三棱柱的側(cè)面繞行兩周到達(dá)點(diǎn)A1的最短路線的長(zhǎng)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案