如圖,在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F(xiàn)分別是A1C1,BC的中點(diǎn).
(Ⅰ)求證:平面ABE⊥B1BCC1;
(Ⅱ)求證:C1F∥平面ABE;
(Ⅲ)求三棱錐E-ABC的體積.
考點(diǎn):平面與平面垂直的判定,棱柱、棱錐、棱臺(tái)的體積,直線與平面平行的判定
專題:空間位置關(guān)系與距離,空間角,立體幾何
分析:(Ⅰ)證明AB⊥B1BCC1,可得平面ABE⊥B1BCC1;
(Ⅱ)證明C1F∥平面ABE,只需證明四邊形FGEC1為平行四邊形,可得C1F∥EG;
(Ⅲ)利用VE-ABC=
1
3
S△ABC•AA1
,可求三棱錐E-ABC的體積.
解答: (Ⅰ)證明:∵三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,
∴BB1⊥AB,
∵AB⊥BC,BB1∩BC=B,
∴AB⊥平面B1BCC1
∵AB?平面ABE,
∴平面ABE⊥B1BCC1;

(Ⅱ)證明:取AB中點(diǎn)G,連接EG,F(xiàn)G,則,
∵F是BC的中點(diǎn),
∴FG∥AC,F(xiàn)G=
1
2
AC,
∵E是A1C1的中點(diǎn),
∴FG∥EC1,F(xiàn)G=EC1,
∴四邊形FGEC1為平行四邊形,
∴C1F∥EG,
∵C1F?平面ABE,EG?平面ABE,
∴C1F∥平面ABE;

(Ⅲ)解:∵AA1=AC=2,BC=1,AB⊥BC,
∴AB=
3
,
∴VE-ABC=
1
3
S△ABC•AA1
=
1
3
×
1
2
×
3
×1×2
=
3
3
點(diǎn)評(píng):本題考查線面平行、垂直的證明,考查三棱錐E-ABC的體積的計(jì)算,正確運(yùn)用線面平行、垂直的判定定理是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)
5
3-4i
的共軛復(fù)數(shù)是(  )
A、
3
5
-
4
5
i
B、
3
5
+
4
5
i
C、3+4i
D、3-4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=
2

(Ⅰ)證明:DE⊥平面ACD;
(Ⅱ)求二面角B-AD-E的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過(guò)點(diǎn)(0,
3
),離心率為
1
2
,左右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l:y=-
1
2
x+m與橢圓交于A、B兩點(diǎn),與以F1F2為直徑的圓交于C、D兩點(diǎn),且滿足
|AB|
|CD|
=
5
3
4
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一盒中裝有9張各寫有一個(gè)數(shù)字的卡片,其中4張卡片上的數(shù)字是1,3張卡片上的數(shù)字是2,2張卡片上的數(shù)字是3,從盒中任取3張卡片.
(Ⅰ)求所取3張卡片上的數(shù)字完全相同的概率;
(Ⅱ)X表示所取3張卡片上的數(shù)字的中位數(shù),求X的分布列與數(shù)學(xué)期望.(注:若三個(gè)數(shù)字a,b,c滿足a≤b≤c,則稱b為這三個(gè)數(shù)的中位數(shù).)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐P-ABC中,點(diǎn)P在平面ABC上的射影D是AC的中點(diǎn),BC=2AC=8,AB=4
5

(Ⅰ)證明:平面PBC⊥平面PAC;
(Ⅱ)若PD=2
3
,求二面角A-PB-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

李明在10場(chǎng)籃球比賽中的投籃情況統(tǒng)計(jì)如下(假設(shè)各場(chǎng)比賽相互獨(dú)立);
場(chǎng)次投籃次數(shù)命中次數(shù)場(chǎng)次投籃次數(shù)命中次數(shù)
主場(chǎng)12212客場(chǎng)1188
主場(chǎng)21512客場(chǎng)21312
主場(chǎng)3128客場(chǎng)3217
主場(chǎng)4238客場(chǎng)41815
主場(chǎng)52420客場(chǎng)52512
(1)從上述比賽中隨機(jī)選擇一場(chǎng),求李明在該場(chǎng)比賽中投籃命中率超過(guò)0.6的概率;
(2)從上述比賽中隨機(jī)選擇一個(gè)主場(chǎng)和一個(gè)客場(chǎng),求李明的投籃命中率一場(chǎng)超過(guò)0.6,一場(chǎng)不超過(guò)0.6的概率;
(3)記
.
x
是表中10個(gè)命中次數(shù)的平均數(shù),從上述比賽中隨機(jī)選擇一場(chǎng),記X為李明在這場(chǎng)比賽中的命中次數(shù),比較EX與
.
x
的大。ㄖ恍鑼懗鼋Y(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn≥S5=-20,n∈N*,則數(shù)列公差d的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以邊長(zhǎng)為1的正方形的一邊所在所在直線為旋轉(zhuǎn)軸,將該正方形旋轉(zhuǎn)一周所得圓柱的側(cè)面積等于( 。
A、2πB、πC、2D、1

查看答案和解析>>

同步練習(xí)冊(cè)答案