設(shè)函數(shù)f(x)=x3-12x+2,x∈R,求函數(shù)f(x)在區(qū)間[0,3]上的最小值.
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:利用函數(shù)的性質(zhì)求解.
解答: 解:∵f(x)=x3-12x+2,∴f′(x)=3x2-12,
令f′(x)=0得,x=±2,…(2分)
當(dāng)x∈[0,3]時(shí),f′(x),f(x)的變化情況如下表:
x[0,2)2(2,3]
f′(x)-0+
 f(x)單調(diào)遞減極小值單調(diào)遞增
…(6分)
又f(0)=2,f(3)=-7,f(2)=-14,
∴f(x)在區(qū)間[0,3]上的最小值為-14.…(8分)
點(diǎn)評(píng):本題主要考查了利用函數(shù)的導(dǎo)數(shù)求出函數(shù)的單調(diào)性以及函數(shù)的極值問(wèn)題,考查學(xué)生分析解決問(wèn)題的能力,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的能力,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cos(
π
6
+θ)=
1
2
,則sin(
4
3
π-θ)的值為( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

①求函數(shù)y=
x-1
+
1
x2-5x+6
的定義域; 
②計(jì)算8 -
2
3
+lg
1
4
-lg25的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sin2ωx+6cos2ωx-3(ω>0)在一個(gè)周期內(nèi)的圖象如圖所示,其中A為圖象的最高點(diǎn),B、C為圖象與軸的交點(diǎn),且△ABC為正三角形.
(Ⅰ)求ω的值;
(Ⅱ)若f(x0)=
6
3
5
,且x0∈(
2
3
,
8
3
),求f(x0+1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是正比例函數(shù),函數(shù)g(x)是反比例函數(shù)且f(1)=1,g(1)=2,
(1)求函數(shù)f(x)和g(x)的解析式
(2)求證:函數(shù)p(x)=f(x)+g(x)在(0,
2
]上單調(diào)遞減
(3)求p(x)=f(x)+g(x)在(0,
2
]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(a+
1
a
)lnx+
1
x
-x
(1)當(dāng)a>1時(shí),討論f(x)在區(qū)間(0,1)上的單調(diào)性;
(2)當(dāng)a>0時(shí),求f(x)的極值;.
(3)當(dāng)a≥3時(shí),曲線y=f(x)上總存在不同兩點(diǎn)P(x1,f(x1)),Q(x2,f(x2)),使得曲線y=f(x)在P、Q兩點(diǎn)處的切線互相平行,證明:x1+x2
6
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a,b,c∈R,a≠0),對(duì)任意的x∈R,都有f(x-4)=f(2-x)成立;
(1)求2a-b的值;
(2)若a=1,f(0)=2,f(x)在區(qū)間[t,t+1](t∈R)上的最小值為2,求t的值;
(3)若函數(shù)f(x)取得最小值0,且對(duì)任意x∈R,不等式x≤f(x)≤(
x+1
2
2恒成立,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角α∈(0,π)且滿足sinα+cosα=
1
5
,
(Ⅰ)求
sin(π-α)+cos(-α)
tan(π+α)
的值;
(Ⅱ)求
1
2
sin2α+cos2α+1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={-1,3,2m-1},B={3,m2},若A∩B=B,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案