在極坐標(biāo)系中,圓ρ=4cosθ的圓心到直線(xiàn)θ=
π
6
(θ∈R)的距離是
 
考點(diǎn):簡(jiǎn)單曲線(xiàn)的極坐標(biāo)方程
專(zhuān)題:坐標(biāo)系和參數(shù)方程
分析:先將極坐標(biāo)方程化為普通方程,可求出圓心的坐標(biāo),再利用點(diǎn)到直線(xiàn)的距離公式即可求出答案.
解答: 解:∵圓ρ=4cosθ,∴ρ2=4ρcosθ.,化為普通方程為x2+y2=4x,即(x-2)2+y2=4,∴圓心的坐標(biāo)為(2,0).
∵直線(xiàn)θ=
π
6
(ρ∈R),∴直線(xiàn)的方程為y=
3
3
x,即x-
3
y=0.
∴圓心(2,0)到直線(xiàn)x-
3
y=0的距離
2
1+(-
3
)
2
=1.
故答案為:1.
點(diǎn)評(píng):正確化極坐標(biāo)方程為普通方程及會(huì)利用點(diǎn)到直線(xiàn)的距離公式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:實(shí)數(shù)x滿(mǎn)足-2≤1-
x-1
3
≤2,命題q:實(shí)數(shù)x滿(mǎn)足x2-2x+(1-m2)≤0(m>0),若?q是?p的充分不必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知⊙O與⊙C:x2+y2-6y+8=0相切于點(diǎn)M(0,2),且經(jīng)過(guò)點(diǎn)N(2,0).
(1)求⊙O的方程;
(2)若直線(xiàn)L:y=kx-(k+1)截⊙O兩點(diǎn)弧長(zhǎng)之比為3:1,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(3
3x2
-
1
x
n的展開(kāi)式中各項(xiàng)系數(shù)之和為256,則展開(kāi)式中第7項(xiàng)的系數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)(1-i)(2+3i)(i為虛數(shù)單位)的實(shí)部是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x1、x2是函數(shù)f(x)=
ex
x
-3的兩個(gè)零點(diǎn),若a<x1<x2,則f(a)的值滿(mǎn)足
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線(xiàn)y=x-4的傾斜角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A是曲線(xiàn)ρ=2cosθ上任意一點(diǎn),則點(diǎn)A到直線(xiàn)ρsin(θ+
π
6
)=4的距離的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在6道題中有4道理科題和2道文科題,如果不放回地依次抽取2道題,則在第1次抽到理科題的條件下,第2次抽到文科題的概率為(  )
A、
2
3
B、
1
5
C、
1
3
D、
2
5

查看答案和解析>>

同步練習(xí)冊(cè)答案