分析 根據(jù)指數(shù)函數(shù)$f(x)={({\frac{1}{2}})^x}$在區(qū)間[0,1]上單調(diào)遞減,得出f(x)max=f(0),f(x)min=f(1),再相加即可.
解答 解:因為指數(shù)函數(shù)$f(x)={({\frac{1}{2}})^x}$在區(qū)間[0,1]上單調(diào)遞減,
所以,f(x)max=f(0),f(x)min=f(1),
所以,f(x)max+f(x)min=f(0)+f(1)=1+$\frac{1}{2}$=$\frac{3}{2}$,
即函數(shù)在[0,1]上的最大值和最小值的和為$\frac{3}{2}$,
故答案為:$\frac{3}{2}$.
點評 本題主要考查了函數(shù)值域的確定,涉及運用函數(shù)的單調(diào)性確定函數(shù)的最大值和最小值,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $f_a^b(f(x)-g(x))dx$ | B. | $f_a^b(g(x)-f(x))dx$ | C. | $f_a^b|{f(x)-g(x)}|dx$ | D. | $|{f_a^b(f(x)-g(x))dx}|$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -3 | B. | $\frac{1}{2}$ | C. | $\frac{3}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 4$\sqrt{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com