【題目】已知橢圓的一個焦點為,離心率為.不過原點的直線與橢圓相交于兩點,設(shè)直線,直線,直線的斜率分別為,且成等比數(shù)列.
(1)求的值;
(2)若點在橢圓上,滿足的直線是否存在?若存在,求出直線的方程;若不存在,請說明理由.
【答案】(1);(2)見解析.
【解析】分析:(1)由離心率公式及基本量運算可得,從而得方程;設(shè)直線的方程為,由,得,由已知,利用韋達(dá)定理帶入可得;
(2)假設(shè)存在直線滿足題設(shè)條件,且設(shè),由,得,代入橢圓方程得:,整理得,由韋達(dá)定理帶入可得,可知直線不存在.
詳解:(1)由已知得,則,
故橢圓的方程為;
設(shè)直線的方程為,
由,得,
則,
由已知,
則,即,
所以;
(2)假設(shè)存在直線滿足題設(shè)條件,且設(shè),
由,得,
代入橢圓方程得:,
即,
則,即,
則,
所以,
化簡得:,而,則,
此時,點中有一點在橢圓的上頂點(或下頂點處),與成等比數(shù)列相矛盾,故這樣的直線不存在.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】表示一位騎自行車和一位騎摩托車的旅行者在相距80 km的甲、乙兩城間從甲城到乙城所行駛的路程與時間之間的函數(shù)關(guān)系,有人根據(jù)函數(shù)圖象,提出了關(guān)于這兩個旅行者的如下信息:
①騎自行車者比騎摩托車者早出發(fā)3 h,晚到1 h;
②騎自行車者是變速運動,騎摩托車者是勻速運動;
③騎摩托車者在出發(fā)1.5 h后追上了騎自行車者;
④騎摩托車者在出發(fā)1.5 h后與騎自行車者速度一樣.
其中,正確信息的序號是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,點為橢圓上一點.
(1)求橢圓C的方程;
(2)已知兩條互相垂直的直線,經(jīng)過橢圓的右焦點,與橢圓交于四點,求四邊形面積的的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)經(jīng)過一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟收入增加了一倍.實現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟收入變化情況,統(tǒng)計了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟收入構(gòu)成比例.得到如下餅圖:
則下面結(jié)論中不正確的是
A. 新農(nóng)村建設(shè)后,種植收入減少
B. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上
C. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍
D. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟收入的一半
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域為;
(1)求實數(shù)的取值范圍;
(2)設(shè)實數(shù)為的最大值,若實數(shù),,滿足,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·全國卷Ⅲ文,18)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.
(1)估計六月份這種酸奶一天的需求量不超過300瓶的概率;
(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元).當(dāng)六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某“農(nóng)家樂”接待中心有客房200間,每間日租金為40元,每天都客滿.根據(jù)實際需要,該中心需提高租金,如果每間客房日租金每增加4元,客房出租就會減少10間.(不考慮其他因素)
(1)設(shè)每間客房日租金提高元(),記該中心客房的日租金總收入為,試用表示
(2)在(1)的條件下,每間客房日租金為多少時,該中心客房的日租金總收入最高?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在(0,+∞)上的函數(shù)f(x)的導(dǎo)數(shù)滿足x2<1,則下列不等式中一定成立的是( 。
A.f()+1<f()<f()﹣1B.f()+1<f()<f()﹣1
C.f()﹣1<f()<f()+1D.f()﹣1<f()<f()+1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com