分析 (1)由圓的方程求出圓心的坐標(biāo)及半徑,由直線被圓截得的弦長(zhǎng),利用垂徑定理得到弦的一半,弦心距及圓的半徑構(gòu)成直角三角形,再根據(jù)勾股定理求出弦心距,一下分兩種情況考慮:若此弦所在直線方程的斜率不存在,顯然x=1滿足題意;若斜率存在,設(shè)出斜率為k,由直線過(guò)P點(diǎn),由P的坐標(biāo)及設(shè)出的k表示出直線的方程,利用點(diǎn)到直線的距離公式表示出圓心到所設(shè)直線的距離d,讓d等于求出的弦心距列出關(guān)于k的方程,求出方程的解得到k的值,進(jìn)而得到所求直線的方程.
(2)MN平分∠ANB,kAN=-kNB,利用韋達(dá)定理,可得結(jié)論.
解答 解:(1)由圓的方程,得到圓心坐標(biāo)為(0,0),半徑r=2,
∵直線被圓截得的弦長(zhǎng)為2$\sqrt{3}$,
∴弦心距為1
若此弦所在的直線方程斜率不存在時(shí),顯然x=1足題意;
若此弦所在的直線方程斜率存在,設(shè)斜率為k,
∴所求直線的方程為y-1=k(x-1)即kx-y-k+1=0
圓心到所設(shè)直線的距離d=$\frac{|-k+1|}{\sqrt{{k}^{2}+1}}$=1,得:k=0
此時(shí)所求方程為y-1=0
綜上,此弦所在直線的方程為x=1或y-1=0.
(2)直線斜率不存在時(shí),x軸正半軸上任意一點(diǎn)都滿足;
斜率存在時(shí),設(shè)方程為x=my+1,代入x2+y2=4可得(1+m2)y2+2my-3=0,
設(shè)N(t,0),A(x1,y1),B(x2,y2),則y1+y2=-$\frac{2m}{1+{m}^{2}}$,y1y2=-$\frac{3}{1+{m}^{2}}$
∵M(jìn)N平分∠ANB,
∴kAN=-kNB,
∴y2(x1-t)+y1(x2-t)=0,
∴y2(my1+2-t)+y1(my2+2-t)=0,
∴2my1y2+(2-t)(y1+y2)=0,
∴2m•(-$\frac{3}{1+{m}^{2}}$)+(2-t)×(-$\frac{2m}{1+{m}^{2}}$)=0,
∴2m(t-5)=0,
∴t=5,即N(5,0),MN平分∠ANB.
點(diǎn)評(píng) 此題考查了直線與圓相交的性質(zhì),考查韋達(dá)定理的運(yùn)用,考查學(xué)生的計(jì)算能力,涉及的知識(shí)有垂徑定理,勾股定理,點(diǎn)到直線的距離公式,以及直線的斜截式方程,利用了分類討論的思想,當(dāng)直線與圓相交時(shí),常常由弦心距,弦的一半及圓的半徑構(gòu)造直角三角形,利用勾股定理來(lái)解決問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 奇函數(shù),且在(0,1)上是增函數(shù) | B. | 奇函數(shù),且在(0,1)上是減函數(shù) | ||
C. | 偶函數(shù),且在(0,1)上是增函數(shù) | D. | 偶函數(shù),且在(0,1)上是減函數(shù) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com