5.設(shè)正項(xiàng)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知S5=40,且a4,a8-1,a15成等比數(shù)列,則S15等于(  )
A.225B.345C.350D.535

分析 設(shè)正項(xiàng)等差數(shù)列{an}的公差為d,由S5=40,且a4,a8-1,a15成等比數(shù)列,可得$\left\{\begin{array}{l}{5{a}_{1}+\frac{5×4}{2}d=40}\\{({a}_{1}+7d-1)^{2}=({a}_{1}+3d)({a}_{1}+14d)}\end{array}\right.$,解出即可得出.

解答 解:設(shè)正項(xiàng)等差數(shù)列{an}的公差為d,∵S5=40,且a4,a8-1,a15成等比數(shù)列,
∴$({a}_{8}-1)^{2}={a}_{4}{a}_{15}$,因此$\left\{\begin{array}{l}{5{a}_{1}+\frac{5×4}{2}d=40}\\{({a}_{1}+7d-1)^{2}=({a}_{1}+3d)({a}_{1}+14d)}\end{array}\right.$,化為13d2-34d-15=0,d>0,解得d=3,a1=2.
∴S15=2×15+$\frac{15×14}{2}×3$=345.
故選:B.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ex,x∈R
(Ⅰ)若直線y=kx與f(x)的反函數(shù)的圖象相切,求實(shí)數(shù)k的值
(Ⅱ)設(shè)a,b∈R,且a≠b,A=f($\frac{a+b}{2}$),B=$\frac{f(a)+f(b)}{2}$,C=$\frac{f(a)-f(b)}{a-b}$,試比較A,B,C三者的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)$f(x)=3sin(ωx+φ)(|φ|<\frac{π}{2})$的最小正周期為π,且f(x)的圖象經(jīng)過點(diǎn)$(-\frac{π}{6},0)$.則函數(shù)f(x)的圖象的一條對(duì)稱軸方程為(  )
A.$x=\frac{5π}{12}$B.$x=-\frac{π}{12}$C.$x=-\frac{5π}{12}$D.$x=\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)a=20.3,b=($\frac{1}{2}$)${\;}^{\frac{2}{3}}$,c=log2$\frac{2}{3}$,則a、b、c的大小關(guān)系是( 。
A.a<b<cB.b<a<cC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若曲線C1:y=ax2(a>0)與曲線C2:y=ex存在公切線,則a的取值范圍為[$\frac{{e}^{2}}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知等比數(shù)列{an}的前n項(xiàng)和為Sn=an-1(a>0,且a≠1),且6a1,a3,a2成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{{a}_{n+1}}{({a}_{n}+1)({a}_{n+1}+1)}$(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知變量x、y滿足:$\left\{\begin{array}{l}{x≥0}\\{x+3≥2y}\\{y≥2x}\end{array}\right.$,則z=($\sqrt{2}$)x+y的最大值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.i為虛數(shù)單位,則i(1-$\sqrt{3}$i)=( 。
A.$\sqrt{3}$-iB.$\sqrt{3}$+iC.-$\sqrt{3}$-iD.-$\sqrt{3}$+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,某動(dòng)物種群數(shù)量1月1日低至700,7月1日高至900,其總量在此兩值之間依正弦型曲線變化.
(1)求出種群數(shù)量y關(guān)于時(shí)間t的函數(shù)表達(dá)式;(其中t以年初以來的月為計(jì)量單位)
(2)估計(jì)當(dāng)年3月1日動(dòng)物種群數(shù)量.

查看答案和解析>>

同步練習(xí)冊(cè)答案