分析 求出兩個(gè)函數(shù)的導(dǎo)函數(shù),設(shè)出兩切點(diǎn),由斜率相等列方程,再由方程有根轉(zhuǎn)化為兩函數(shù)圖象有交點(diǎn),求得a的范圍.
解答 解:由y=ax2(a>0),得y′=2ax,
由y=ex,得y′=ex,
曲線C1:y=ax2(a>0)與曲線C2:y=ex存在公共切線,
設(shè)公切線與曲線C1切于點(diǎn)(x1,ax12),與曲線C2切于點(diǎn)(x2,ex2),
則2ax1=ex2=$\frac{{{e}^{x}}_{2}-a{{x}_{1}}^{2}}{{x}_{2}-{x}_{1}}$,
可得2x2=x1+2,
∴a=$\frac{{e}^{\frac{{x}_{1}}{2}+1}}{2{x}_{1}}$,
記f(x)=$\frac{{e}^{\frac{x}{2}+1}}{2x}$,
則f′(x)=$\frac{{e}^{\frac{x}{2}+1}(x-2)}{4{x}^{2}}$,
當(dāng)x∈(0,2)時(shí),f′(x)<0,f(x)遞減;
當(dāng)x∈(2,+∞)時(shí),f′(x)>0,f(x)遞增.
∴當(dāng)x=2時(shí),f(x)min=$\frac{{e}^{2}}{4}$.
∴a的范圍是[$\frac{{e}^{2}}{4}$,+∞).
故答案為:[$\frac{{e}^{2}}{4}$,+∞).
點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究過(guò)曲線上某點(diǎn)處的切線方程,考查了方程有實(shí)數(shù)解的條件,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | A?B | B. | A∪B=A | C. | A∩B=B | D. | ∁RB=A |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 225 | B. | 345 | C. | 350 | D. | 535 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com