如圖,在四棱錐S-ABCD中,底面ABCD是直角梯形,AD∥BC,SA⊥CD,AB⊥平面SAD,M是SC的中點(diǎn),且SA=AB=BC=2,AD=1.
(1)求證:DM∥平面SAB;
(2)求四棱錐M-ABCD的體積.
考點(diǎn):棱柱、棱錐、棱臺(tái)的體積,直線與平面平行的判定
專題:綜合題,空間位置關(guān)系與距離
分析:(1)取SB的中點(diǎn)N,證明四邊形MNAD是平行四邊形,即可證明DM∥平面SAB;
(2)證明側(cè)棱SA⊥底面ABCD,利用錐體的體積公式,可求四棱錐M-ABCD的體積.
解答: (1)證明:取SB的中點(diǎn)N,連接AN、MN…(2分)

∵點(diǎn)M是SC的中點(diǎn)∴MN∥BC且BC=2MN,
∵底面ABCD是直角梯形,AB垂直于AD和BC,BC=2,AD=1,
∴AD∥BC且BC=2AD,∴MN∥AD且MN=AD,
∴四邊形MNAD是平行四邊形,∴DM∥AN,…(4分)
∴DM∥平面SAB.…(6分)
(2)解:∵AB⊥底面SAD,SA?底面SAD,AD?底面SAD,
∴AB⊥SA,AB⊥AD,
∵SA⊥CD,AB、CD是平面ABCD內(nèi)的兩條相交直線
∴側(cè)棱SA⊥底面ABCD     …(8分)
又在四棱錐S-ABCD中,側(cè)棱SA⊥底面ABCD,底面ABCD是直角梯形,
∴AD∥BC,AB⊥AD,SA=AB=BC=2,AD=1,
又M是SC的中點(diǎn).
VM-ABCD=
1
2
VS-ABCD=
1
2
1
3
SABCD•SA=
1
2
1
3
(2+1)•2
2
•2=1
…(12分)
點(diǎn)評(píng):本題考查四棱錐的體積,考查線面平行,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(2sin(ωx+
3
),2),
b
=(2cosωx,0)(ω>0),函數(shù)f(x)=
a
b
的圖象與直線y=-2+
3
的相鄰兩個(gè)交點(diǎn)之間的距離為π,
(1)求ω的值;
(2)求函數(shù)f(x)在[0,π]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(其中x∈R,A>0,ω>0,0<φ<
π
2
)的部分圖象如圖.
(1)求函數(shù)f(x)的解析式;
(2)求g(x)=f(x+
π
12
)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了檢測(cè)某種新研制出的禽流感疫苗對(duì)家禽的免疫效果,某研究中心隨機(jī)抽取了50只雞作為樣本,進(jìn)行家禽免疫效果試驗(yàn),得到如下缺少部分?jǐn)?shù)據(jù)的2×2列聯(lián)表.已知用分層抽樣的方法,從對(duì)禽流感病毒沒(méi)有免疫力的20只雞中抽取8只,恰好抽到2只注射了該疫苗的雞.
(Ⅰ)從抽取到的這8只雞隨機(jī)抽取3只進(jìn)行解剖研究,求至少抽到1只注射了該疫苗的雞的概率;
(Ⅱ)完成下面2×2列聯(lián)表,并幫助該研究和縱向判斷:在犯錯(cuò)誤的概率不超過(guò)0.5%的前提下,能否認(rèn)為這種新研制出的禽流感疫苗對(duì)家禽具有免疫效果?
有免疫力沒(méi)有免疫力  總計(jì)
 有注射疫苗  20
 沒(méi)有注射疫苗
    總計(jì)   20   50

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=x-
4-x2
,求值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,已知c=2b,向量
m
=(sinA,
3
2
),
n
=(1,sinA+
3
cosA),且
m
n
共線.
(1)求角A的大。
(2)求
a
c
的值;
(3)若a=
3
,求邊c上的高h(yuǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b為正實(shí)數(shù),若|
a
-
b
|=1,試判斷|a-b|與1的大小關(guān)系并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E、F分別為A1C1、BC的中點(diǎn),AC與平面BCC1B1所成角為45°.
(1)求證:C1F∥平面ABE;
(2)求三棱錐B-AFC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
x-1
x+1

(Ⅰ)設(shè)函數(shù)F(x)=f(x)g(x),求F(x)的單調(diào)區(qū)間;
(Ⅱ)若不等式f(x)+mg(x)<0對(duì)于任意x∈(0,1)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案