已知函數(shù)f(x)的定義域?yàn)镈,若它的值域是D的子集,則稱f(x)在D上封閉.
(Ⅰ)試判斷f(x)=2x,g(x)=log2x是否在(1,+∞)上封閉;
(Ⅱ)設(shè)f1(x)=f(x),fn(x)=f(fn-1(x))(n∈N*,n≥2),求證:fn(x)在D上封閉的充分條件是f1(x)在D上封閉;
(Ⅲ)若(Ⅱ)中fn(x)(n∈N*)的定義域均為D,那么f1(x)在D上封閉是fn(x)在D上封閉的必要條件嗎?證明你的結(jié)論.
考點(diǎn):反證法,指數(shù)函數(shù)綜合題,對(duì)數(shù)函數(shù)圖象與性質(zhì)的綜合應(yīng)用,反證法的應(yīng)用
專題:推理和證明
分析:(Ⅰ)根據(jù)函數(shù)封閉的定義封閉求出兩個(gè)函數(shù)的值域即可判斷f(x)=2x,g(x)=log2x是否在(1,+∞)上封閉;
(Ⅱ)根據(jù)封閉的定義,結(jié)合充要條件即可證明fn(x)在D上封閉的充分條件是f1(x)在D上封閉;
(Ⅲ)利用反證法即可得到結(jié)論.
解答: 解:(Ⅰ)當(dāng)x>1時(shí),f(x)=2x∈(2,+∞),f(x)在(1,+∞)上封閉,
g(x)=log2x∈(0,+∞),g(x)在(1,+∞)上不封閉;
(Ⅱ)設(shè)f1(x)=f(x),fn(x)=f(fn-1(x))(n∈N*,n≥2),
任取x∈D,∵f1(x)在D上封閉,∴f2(x)=f(f1(x))∈D,

fn(x)=f(fn-1(x)))∈D,
∴fn(x)在D上封閉的充分條件是f1(x)在D上封閉;
(Ⅲ)是必要條件.(反證法)
假設(shè)fn(x)在D上不封閉,即存在x0∈D,使得f(x0)∉D,
那么f2(x0)=f(f1(x0))無(wú)意義,這與fn(x)(n∈N*)的定義域均為D矛盾,
故假設(shè)不成立,
即f1(x)在D上封閉是fn(x)在D上封閉的必要條件.
點(diǎn)評(píng):本題主要考查函數(shù)值域的求法,以及與函數(shù)有關(guān)的新定義,利用反證法是解決本題的關(guān)鍵,綜合性較強(qiáng),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m=
1
0
exdx,n=
e
1
exdx,則m,n的大小為( 。
A、m>nB、m=n
C、m<nD、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=2sin(π-x)•cos(2π-x)-2
3
sin2x,a,b,c分別為△ABC中角A,B,C的對(duì)邊,角A為銳角且f(A)=0
(1)求角A的大;
(2)若a=2,b=2
3
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,AB=6,AC=4,當(dāng)∠A變化時(shí),求∠A的平分線與BC的垂直平分線的交點(diǎn)P的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
a
×(
b
+
c
),其中
a
=(sinx,-cosx),
b
=(sinx,-3cosx),
c
=(-cosx,sinx),x∈R.
(1)求函數(shù)的解析式;
(2)求當(dāng)x∈[
8
,
8
]時(shí),函數(shù)f(x)的單調(diào)性;
(3)y=cosx的圖象函數(shù)經(jīng)過(guò)怎樣的轉(zhuǎn)換得到f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx-
1
x
,(其中a∈R)
(1)設(shè)h(x)=f(x)+x,討論h(x)的單調(diào)性.
(2)若函數(shù)f(x)有唯一的零點(diǎn),求a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3+bx2+cx-3
,y=f′(x)為f(x)的導(dǎo)函數(shù),滿足f′(2-x)=f′(x);f′(x)=0有解,但解卻不是函數(shù)f(x)的極值點(diǎn).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
,m>0,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)于一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=2,求sin2α+sinαcosα+2cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

空間三點(diǎn)A(1,5,-2),B(2,4,1),C(p,2,q+2),若A、B、C三點(diǎn)共線,則p+q=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案