已知{an}為等差數(shù)列,若a1+a5+a9=8π,則cos(a2+a8)的值為
 
考點(diǎn):等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:設(shè)等差數(shù)列的公差為d,利用{an}為等差數(shù)列,a1+a5+a9=8π,可得3a1+12d=8π,從而可求a2+a8,進(jìn)而可求cos(a2+a8)的值.
解答: 解:設(shè)等差數(shù)列的公差為d,
∵{an}為等差數(shù)列,a1+a5+a9=8π,
∴3a1+12d=8π,
∴a2+a8=2a1+8d=2(a1+4d)=2•
3
=
16π
3
,
∴cos(a2+a8)=cos
16π
3
=cos
3
=-
1
2

故答案為:-
1
2
點(diǎn)評(píng):本題考查等差數(shù)列的通項(xiàng),考查特殊角的三角函數(shù)值,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)集M中至少含有兩個(gè)元素,且M中任意兩個(gè)元素之差的絕對(duì)值都大于2,則稱M為“絕對(duì)好集”.已知集合A={1,2,3,…,10},則A的所有子集中“絕對(duì)好集”的個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}的前n項(xiàng)和是Sn,且a2=2,S4=4.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)在平面直角坐標(biāo)系中,若
m
=(4,s 2),
n
=(4k,-s3)
,且
m
n
,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

因式分解:
(1)(a2+2a)2-7(a2+2a)-8
(2)x3-3x2+3x-1
(3)k3-3k+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是一個(gè)幾何體的三視圖,其中正視圖與左視圖都是全等的腰為
3
的等腰三角形,俯視圖是邊長(zhǎng)為2的正方形,
(1)畫(huà)出該幾何體;
(2)求此幾何體的表面積與體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在區(qū)間[0,1]上隨機(jī)取三個(gè)數(shù)x,y,z,事件A={(x,y,z)|x2+y2+z2<1},則P(A)=( 。
A、
1
8
B、
1
4
C、
π
6
D、
π
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某單位擬建一個(gè)扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點(diǎn)O為圓心的兩個(gè)同心圓弧和延長(zhǎng)后通過(guò)點(diǎn)O的兩條直線段圍成.按設(shè)計(jì)要求扇環(huán)面的周長(zhǎng)為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為x米,圓心角為θ(弧度).
(1)求θ關(guān)于x的函數(shù)關(guān)系式;
(2)已知在花壇的邊緣(實(shí)線部分)進(jìn)行裝飾時(shí),直線部分的裝飾費(fèi)用為4元/米,弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為y,求y關(guān)于x的函數(shù)關(guān)系式,并求出x為何值時(shí),y取得最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)的定義域?yàn)镈,若對(duì)于任意x1,x2∈D,當(dāng)x1<x2時(shí),都有f(x1)≥f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)在[0,1]上為非減函數(shù),且滿足以下三個(gè)條件:①f(0)=0;②f(
x
3
)=
1
2
f(x)
;③f(1-x)=1-f(x).則f(
1
6
)
=
 
;f(
1
4
)+f(
1
7
)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

sin480°+tan300°的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案