7.設(shè)函數(shù)g(x)是定義域?yàn)镽的奇函數(shù),f(x)=g(x)+4,且f[lg(log310)]=5,則f[lg(lg3)]=(  )
A.-3B.-2C.3D.4

分析 建立起log310與lg3之間的關(guān)系,再利用函數(shù)為奇函數(shù)即可得到答案.

解答 解:∵f[lg(log310)]=f[-lg(lg3)]=5,
∴f[lg(lg3)]-4=-{f[-lg(lg3)]-4}=-1,
即f[lg(lg3)]=3,故選:C.

點(diǎn)評(píng) 本題考查求函數(shù)值,建立起已知與結(jié)論之間的聯(lián)系是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知點(diǎn)M1(6,2)和點(diǎn)M2(1,7),直線y=mx-7與線段M1M2交點(diǎn)M滿足$\overrightarrow{{M}_{1}M}$=$\frac{3}{2}$$\overrightarrow{M{M}_{2}}$,則m=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.現(xiàn)有10個(gè)數(shù),它們能構(gòu)成一個(gè)以1為首項(xiàng),-3為公比的等比數(shù)列,從這10個(gè)數(shù)中隨機(jī)抽取一個(gè)數(shù),事件A=“抽取出的數(shù)小于8”,事件B=“抽取出的數(shù)是正數(shù)”,則P(B|A)=$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.化簡(jiǎn):$\sqrt{2-\sqrt{2+\sqrt{2+2cosα}}}$(3π<α<4π)=2cos$\frac{α}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知?jiǎng)狱c(diǎn)Q與兩定點(diǎn)(-$\sqrt{2}$,0),($\sqrt{2}$,0)連線的斜率的乘積為-$\frac{1}{2}$,點(diǎn)Q形成的軌跡為M.
(Ⅰ)求軌跡M的方程;
(Ⅱ)過(guò)點(diǎn)P(-2,0)的直線l交M于A、B兩點(diǎn),且$\overrightarrow{PB}$=3$\overrightarrow{PA}$,平行于AB的直線與M位于x軸上方的部分交于C、D兩點(diǎn),過(guò)C、D兩點(diǎn)分別作CE、DF垂直x軸于E、F兩點(diǎn),求四邊形CEFD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知集合A={x|x2-x-2≤0},B={x|x<1},則A∩B為( 。
A.(1,2)B.(1,2]C.[-1,1)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列命題中,真命題是 ( 。
A.?x0∈R,使得${e^{x_0}}≤0$B.sin2x+$\frac{2}{sinx}$≥3(x≠kπ,k∈Z)
C.函數(shù)f(x)=2x-x2有兩個(gè)零點(diǎn)D.a>1,b>1是ab>1的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知方程ax2+bx+c=0的兩根為x1,x2,且x1<x2,若a<0,則不等式ax2+bx+c<0的解為( 。
A.RB.x1<x<x2C.x<x1或x>x2D.無(wú)解

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在△ABC中,a,b,c分別為A,B,C所對(duì)的邊.
(1)若$\frac{a-b}$=$\frac{sinC}{sinA-sinC}$,判斷△ABC的形狀;
(2)若a=2,B=$\frac{π}{6}$,△ABC的面積為$\frac{\sqrt{3}}{3}$,求邊長(zhǎng)b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案