分析 (I)當(dāng)a=0時(shí),f(x)≥g(x)即(1+x)2-mln(1+x)≥x2+x.由于f(x)≥g(x)在(0,+∞)上恒成立,可得m≤$[\frac{1+x}{ln(1+x)}]_{min}$,利用導(dǎo)數(shù)研究其單調(diào)性極值與最值即可得出.
(II)利用導(dǎo)數(shù)研究函數(shù)h(x)的單調(diào)性,進(jìn)而得出關(guān)系式.
解答 解:(I)當(dāng)a=0時(shí),f(x)≥g(x)即(1+x)2-mln(1+x)≥x2+x.
由于f(x)≥g(x)在(0,+∞)上恒成立,∴m≤$[\frac{1+x}{ln(1+x)}]_{min}$,
令h(x)=$\frac{1+x}{ln(1+x)}$,h′(x)=$\frac{ln(1+x)-1}{l{n}^{2}(1+x)}$.
令h′(x)>0,解得x>e-1,此時(shí)函數(shù)h(x)單調(diào)遞增;令h′(x)<0,解得0<x<e-1,此時(shí)函數(shù)h(x)單調(diào)遞減.
∴當(dāng)x=e-1時(shí),函數(shù)h(x)取得最小值,h(e-1)=e.
∴m≤e.
∴實(shí)數(shù)m的取值范圍是m≤e.
(II)當(dāng)m=2時(shí),若函數(shù)h(x)=f(x)-g(x)=1+x-2ln(1+x)-a,
h′(x)=1-$\frac{2}{1+x}$=$\frac{x-1}{x+1}$,
當(dāng)x∈[0,1)時(shí),h′(x)<0,函數(shù)h(x)單調(diào)遞減;當(dāng)x∈(1,2]時(shí),h′(x)<0,函數(shù)h(x)單調(diào)遞增.
∴當(dāng)x=1時(shí),函數(shù)h(x)取得最小值,h(1)=2-2ln2-a;
又h(0)=1-a,h(2)=3-2ln3-a.∴h(2)<h(0).
∵函數(shù)h(x)在[0,2]上恰有兩個(gè)不同的零點(diǎn),
∴$\left\{\begin{array}{l}{h(2)≥0}\\{h(1)<0}\end{array}\right.$,
解得:2-2ln2<a≤3-2ln3,
∴實(shí)數(shù)a的取值范圍是(2-2ln2,3-2ln3].
點(diǎn)評(píng) 本題考查了考查了利用導(dǎo)數(shù)研究其單調(diào)性極值與最值,考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | b>a>c | B. | a>c>b | C. | c>b>a | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{20}{31}$ | B. | $\frac{19}{29}$ | C. | $\frac{17}{28}$ | D. | $\frac{16}{27}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $1-\frac{{\sqrt{3}}}{2},\frac{3}{2}$ | B. | $\frac{1}{2}$,$\frac{5}{4}$ | C. | $1-\frac{{\sqrt{3}}}{2},1+\frac{{\sqrt{3}}}{2}$ | D. | $1-\frac{{\sqrt{3}}}{2},1+\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2 | B. | f(x)=|x|,g(x)=$\sqrt{{t}^{2}}$ | ||
C. | f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1 | D. | f(x)=$\sqrt{x+1}-\sqrt{x-1}$,g(x)=$\sqrt{{x}^{2}-1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向左平移$\frac{π}{6}$個(gè)單位 | B. | 向右平移$\frac{π}{6}$個(gè)單位 | ||
C. | 向左平移$\frac{π}{12}$個(gè)單位 | D. | 向右平移$\frac{π}{12}$個(gè)單位 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com