已知x為實數(shù),則“x≥3”是“x2-2x-3≥0”的
 
條件(填充分不必要、必要不充分、充要條件、既不充分也不必要).
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:求出不等式的等價條件,利用充分條件和必要條件的定義即可得到結(jié)論.
解答: 解:由x2-2x-3≥0解得x≥3或x≤-1,
∴“x≥3”是“x2-2x-3≥0”的充分不必要條件,
故答案為:充分不必要
點評:本題主要考查充分條件和必要條件的判斷,根據(jù)不等式的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}前n項和Sn,且Sn=2an-2,令bn=log2an
(Ⅰ)試求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)cn=
bn
an
,求證數(shù)列{cn}的前n項和Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C1
x=-4+cost
y=3+sint
(t為參數(shù)),C2
x=8cosθ
y=3sinθ
(θ為參數(shù)).
(Ⅰ)化C1,C2的方程為普通方程;
(Ⅱ)若C1上的點P對應(yīng)的參數(shù)為t=
π
2
,Q為C2上的動點,求PQ中點M到直線C3
x=3+2t
y=-2+t
(t為參數(shù))距離的最小值及此時Q點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2=12,直線l:4x+3y=25,則圓C的圓心到直線l的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}前n項和Sn=2n2+3n+1,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域為A,若x1,x2∈A且f(x1)=f(x2)時總有x1=x2,則稱f(x)為單函數(shù),例如,函數(shù)f(x)=2x+1(x∈R)是單函數(shù).下列命題:
①函數(shù)f(x)=x2(x∈R)是單函數(shù);
②指數(shù)函數(shù)f(x)=2x(x∈R)是單函數(shù);
③若f(x)為單函數(shù),x1,x2∈A且x1≠x2,則f(x1)≠f(x2);
④在定義域上具有單調(diào)性的函數(shù)一定是單函數(shù);
⑤若f(x)為單函數(shù),則函數(shù)f(x)在定義域上具有單調(diào)性.
其中的真命題是
 
.(寫出所有真命題的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)由“若a,b,c∈R,則(ab)c=a(bc)”類比“若
a
b
,
c
為三個向量則(
a
b
)•
c
=
a
•(
b
c
)”;
(2)在數(shù)列{an}中,a1=0,an+1=2an+2猜想an=2n-2;
(3)在平面內(nèi)“三角形的兩邊之和大于第三邊”類比在空間中“四面體的任意三個面的面積之和大于第四個面的面積;
(4)
-2
-3
1
x
dx=ln
2
3

上述四個推理中,得出的結(jié)論正確的是
 
.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P(x,y)是曲線C:x2+y2+4x+3=0上任意一點,則
y
x
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果
a
b
=
a
c
a
0
,那么(  )
A、
b
=
c
B、
b
c
C、
b
c
D、
b
c
a
方向上的投影相等

查看答案和解析>>

同步練習(xí)冊答案