5.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>D)的離心率為$\frac{\sqrt{3}}{3}$,過(guò)右焦點(diǎn)F的直線l與C相交于A、B兩點(diǎn),當(dāng)l的斜率為1時(shí),坐標(biāo)原點(diǎn)O到l的距離為$\frac{\sqrt{2}}{2}$.
(1)求a、b的值;
(2)C上是否存在點(diǎn)P,使得當(dāng)l繞P轉(zhuǎn)到某一位置時(shí),有$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$成立?若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說(shuō)明理由.

分析 (1)直線l的方程為y=x-c,則$\frac{c}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,解得c,又$\frac{c}{a}=\frac{\sqrt{3}}{3}$,b2=a2-c2,解得a,b即可得出.
(2)由(1)可得:橢圓C的方程為$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}$=1.假設(shè)C上存在點(diǎn)P,使得當(dāng)l繞P轉(zhuǎn)到某一位置時(shí),有$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$成立.設(shè)A(x1,y1),B(x2,y2).
設(shè)直線l的方程為my=x-1,與橢圓方程聯(lián)立化為(2m2+3)y2+4my-4=0,利用根與系數(shù)的關(guān)系及其$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$=(x1+x2,y1+y2),可得點(diǎn)P的坐標(biāo)(用m表示),代入橢圓的方程即可得出.

解答 解:(1)直線l的方程為y=x-c,則$\frac{c}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,解得c=1,
又$\frac{c}{a}=\frac{\sqrt{3}}{3}$,b2=a2-c2,解得$a=\sqrt{3}$,b2=2.
∴得$a=\sqrt{3}$,b=$\sqrt{2}$.
(2)由(1)可得:橢圓C的方程為$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}$=1.
假設(shè)C上存在點(diǎn)P,使得當(dāng)l繞P轉(zhuǎn)到某一位置時(shí),有$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$成立.設(shè)A(x1,y1),B(x2,y2).
設(shè)直線l的方程為my=x-1,聯(lián)立$\left\{\begin{array}{l}{my=x-1}\\{\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,
化為(2m2+3)y2+4my-4=0,
∴y1+y2=$\frac{-4m}{2{m}^{2}+3}$.
∴x1+x2=m(y1+y2)+2=$\frac{6}{2{m}^{2}+3}$.
∴$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$=(x1+x2,y1+y2)=$(\frac{6}{2{m}^{2}+3},\frac{-4m}{2{m}^{2}+3})$.
代入橢圓方程可得:$\frac{36}{3(2{m}^{2}+3)^{2}}$+$\frac{16{m}^{2}}{2(2{m}^{2}+3)^{2}}$=1,
化為2m2-1=0,
解得m=$±\frac{1}{\sqrt{2}}$.
∴直線l的方程為:y=$±\sqrt{2}$(x-1).
由方程:${y}^{2}±\sqrt{2}y$-1=0,
解得$\left\{\begin{array}{l}{x=\frac{\sqrt{3}+1}{2}}\\{y=\frac{\sqrt{6}-\sqrt{2}}{2}}\end{array}\right.$,$\left\{\begin{array}{l}{x=\frac{1-\sqrt{3}}{2}}\\{y=\frac{-\sqrt{6}-\sqrt{2}}{2}}\end{array}\right.$,$\left\{\begin{array}{l}{x=\frac{1-\sqrt{3}}{2}}\\{y=\frac{\sqrt{2}+\sqrt{6}}{2}}\end{array}\right.$,$\left\{\begin{array}{l}{x=\frac{\sqrt{3}+1}{2}}\\{y=\frac{\sqrt{2}-\sqrt{6}}{2}}\end{array}\right.$.
因此假設(shè)正確.

點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問(wèn)題、一元二次方程的根與系數(shù)的關(guān)系、向量坐標(biāo)運(yùn)算,考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=$\frac{1}{2}$AB=2,點(diǎn)E為AC中點(diǎn).將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D-ABC,如圖2所示.

(Ⅰ)在CD上找一點(diǎn)F,使AD∥平面EFB;
(Ⅱ)求三棱錐C-ABC的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若不等式|2x+1|-|x-4|≥m恒成立,則實(shí)數(shù)m的取值范圍是(  )
A.(-∞,-1]B.(-∞,-$\frac{5}{2}$]C.(-∞,-$\frac{9}{2}$]D.(-∞,-5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在邊長(zhǎng)為1的正方體ABCD-A1B1C1D1中,O、E分別是A1C、BC的中點(diǎn),P是線段A1O上一動(dòng)點(diǎn).
(1)求直線PA1與平面AB1P所成角的正弦的取值范圍;
(2)當(dāng)直線PA1與平面AB1P所成的角最大時(shí),在平面A1CD上是否存在一點(diǎn)Q,使得點(diǎn)Q同時(shí)滿足下列兩個(gè)條件:①EQ⊥AP;②|D1Q|=$\frac{\sqrt{5}}{2}$,若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.a(chǎn)=sin(sin1),b=cos(cos1),c=tan(tan1),下列正確的是(  )
A.b<c<aB.a<b<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(α>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A,過(guò)F1的直線l:x-y+2=0與y軸交于點(diǎn)M,滿足|OM|=|OA|2(O為坐標(biāo)原點(diǎn))且,直線l與直線l′:x-y+m=0(m<0)之間的距離為$\frac{5\sqrt{2}}{4}$.
(1)求橢圓C的方程:
(2)在直線l′上是否存在點(diǎn)P,滿足|PF1|=3|PF2|?若存在,指出有幾個(gè)這樣的點(diǎn)(不必求出點(diǎn)的坐標(biāo));若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)y=f(2x+1)定義域是[-1,0],則y=f(x+1)的定義域是( 。
A.[-1,1]B.[0,2]C.[-2,0]D.[-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=sin2ωx+2$\sqrt{3}$sinωxcosωx-cos2ωx(ω>0),f(x)的圖象相鄰兩條對(duì)稱軸的距離為$\frac{π}{4}$.
(Ⅰ)求f($\frac{π}{4}$)的值;
(Ⅱ)將f(x)的圖象上所有點(diǎn)向左平移m(m>0)個(gè)長(zhǎng)度單位,得到y(tǒng)=g(x)的圖象,若y=g(x)圖象的一個(gè)對(duì)稱中心為($\frac{π}{6}$,0),當(dāng)m取得最小值時(shí),求g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在△ABC中,已知tanB+tanC+$\sqrt{3}$tanBtanC=$\sqrt{3}$,且$\sqrt{3}$(tanA+tanB)=tanAtanB-1,求△ABC的三內(nèi)角的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案