15.在△ABC中,已知tanB+tanC+$\sqrt{3}$tanBtanC=$\sqrt{3}$,且$\sqrt{3}$(tanA+tanB)=tanAtanB-1,求△ABC的三內(nèi)角的值.

分析 把已知的兩等式變形后,根據(jù)兩角和的正切函數(shù)公式及誘導(dǎo)公式化簡(jiǎn),分別根據(jù)A和C的范圍,利用特殊角的三角函數(shù)值即可求出A和C的度數(shù).

解答 解:∵tanB+tanC+$\sqrt{3}$tanBtanC=$\sqrt{3}$,且A+B+C=180°,
∴$\frac{tanB+tanC}{1-tanBtanC}$=$\sqrt{3}$,即tan(B+C)=-tanA=$\sqrt{3}$,
∴tanA=-$\sqrt{3}$,
∵0<A<π,∴∠A=120°,
∵$\sqrt{3}$(tanA+tanB)=tanAtanB-1,
∴$\frac{tanB+tanA}{1-tanBtanA}$=-$\frac{\sqrt{3}}{3}$
即tan(B+A)=-tanC=-$\frac{\sqrt{3}}{3}$,
∴tanC=$\frac{\sqrt{3}}{3}$,
∵0<C<π,∴∠C=30°,
∴∠B=180°-120°-30°=30°,
即∠B=∠C=30°,∠A=120°.

點(diǎn)評(píng) 此題考查了三角形的解法,要到的知識(shí)有兩角和與差的正切函數(shù)公式、誘導(dǎo)公式、特殊角的三角函數(shù)值,以及等腰三角形的判別方法,其中靈活運(yùn)用公式把已知的兩等式進(jìn)行三角函數(shù)的恒等變形,得到A和C的度數(shù),進(jìn)而得到B的度數(shù)是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>D)的離心率為$\frac{\sqrt{3}}{3}$,過右焦點(diǎn)F的直線l與C相交于A、B兩點(diǎn),當(dāng)l的斜率為1時(shí),坐標(biāo)原點(diǎn)O到l的距離為$\frac{\sqrt{2}}{2}$.
(1)求a、b的值;
(2)C上是否存在點(diǎn)P,使得當(dāng)l繞P轉(zhuǎn)到某一位置時(shí),有$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$成立?若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=mx2-2x+3在[-2,+∞)上遞減,則實(shí)數(shù)m的取值范圍[-$\frac{1}{2}$,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若拋物線y=x2log2a+2xloga2+8的圖象在x軸上方,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知log${\;}_{\frac{2}{3}}$a>1,($\frac{2}{3}$)b>1,2c=3,則( 。
A.a>b>cB.c>b>aC.a>c>bD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,若4S2n-2=a2n+$\frac{1}{{{a}^{2}}_{n}}$(n∈N*),則S2014=( 。
A.2015+$\frac{\sqrt{2015}}{2015}$B.2015-$\frac{\sqrt{2015}}{2015}$C.2015D.$\sqrt{2014}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=Acos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,其中M,P分別是函數(shù)f(x)的圖象與坐標(biāo)軸的交點(diǎn),N是函數(shù)f(x)的圖象的一個(gè)最低點(diǎn),若點(diǎn)N,P的橫坐標(biāo)分別為$\frac{5π}{8}$,$\frac{11π}{8}$,且$\overrightarrow{OM}$•$\overrightarrow{ON}$=-2$\sqrt{2}$,則下列說法正確的個(gè)數(shù)為( 。
①A=±2;
②函數(shù)f(x)在[$\frac{9π}{4}$,$\frac{21π}{8}$]上單調(diào)遞減;
③要得到函數(shù)f(x)的圖象,只需將函數(shù)y=4sinxcosx的圖象向左平移$\frac{π}{8}$個(gè)單位.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知方程$\frac{{x}^{2}}{k-1}$-$\frac{{y}^{2}}{|k|}$=-1表示雙曲線,則實(shí)數(shù)k的取值范圍為( 。
A.(-∞,0)∪(0,1)∪(1,+∞)B.(1,+∞)C.(0,1)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.當(dāng)x→0+時(shí),無窮小量f(x)=${∫}_{0}^{{X}^{2}}$sintdt是無窮小量x3的(  )
A.高階無窮小量B.低階無窮小量
C.同階但非等價(jià)無窮小量D.等價(jià)無窮小量

查看答案和解析>>

同步練習(xí)冊(cè)答案