14.已知函數(shù)f(x)=sin2ωx+2$\sqrt{3}$sinωxcosωx-cos2ωx(ω>0),f(x)的圖象相鄰兩條對(duì)稱軸的距離為$\frac{π}{4}$.
(Ⅰ)求f($\frac{π}{4}$)的值;
(Ⅱ)將f(x)的圖象上所有點(diǎn)向左平移m(m>0)個(gè)長度單位,得到y(tǒng)=g(x)的圖象,若y=g(x)圖象的一個(gè)對(duì)稱中心為($\frac{π}{6}$,0),當(dāng)m取得最小值時(shí),求g(x)的單調(diào)遞增區(qū)間.

分析 (Ⅰ)由三角函數(shù)恒等變換的應(yīng)用可求函數(shù)解析式f(x)=2sin(2ωx-$\frac{π}{6}$),由題意可求周期T=$\frac{π}{2}$,由周期公式可求ω,從而可得函數(shù)解析式,進(jìn)而得解.
(Ⅱ)由(Ⅰ)可求g(x)=2sin(4x+4m-$\frac{π}{6}$),由題意可得4×$\frac{π}{6}$+4m-$\frac{π}{6}$=kπ(k∈Z),可得:m=$\frac{kπ}{4}$-$\frac{π}{8}$,可求m的最小值,由2k$π-\frac{π}{2}$≤4x+$\frac{π}{3}$≤2k$π+\frac{π}{2}$,k∈Z,解得g(x)的單調(diào)遞增區(qū)間.

解答 (本題滿分為12分)
解:(Ⅰ)由題意可得:f(x)=sin2ωx+2$\sqrt{3}$sinωxcosωx-cos2ωx
=-(cos2ωx-sin2ωx)+$\sqrt{3}$sin2ωx
=$\sqrt{3}$sin2ωx-cos2ωx
=2sin(2ωx-$\frac{π}{6}$)
∵f(x)的圖象相鄰兩條對(duì)稱軸的距離為$\frac{π}{4}$.
∴周期T=$\frac{π}{2}$,由$\frac{2π}{2ω}$=$\frac{π}{2}$,可得ω=2.
∴f(x)=2sin(4x-$\frac{π}{6}$),
∴f($\frac{π}{4}$)=2sin(4×$\frac{π}{4}$-$\frac{π}{6}$)=2sin$\frac{5π}{6}$=1…6分
(Ⅱ)由(Ⅰ)可知f(x)=2sin(4x-$\frac{π}{6}$),則g(x)=2sin(4x+4m-$\frac{π}{6}$),
∵($\frac{π}{6}$,0)為y=g(x)圖象的一個(gè)對(duì)稱中心,
∴2sin(4×$\frac{π}{6}$+4m-$\frac{π}{6}$)=0,解得:4×$\frac{π}{6}$+4m-$\frac{π}{6}$=kπ(k∈Z),可得:m=$\frac{kπ}{4}$-$\frac{π}{8}$,
當(dāng)k=1時(shí),m取得最小值$\frac{π}{8}$…10分本題
此時(shí)g(x)=2sin(4x+$\frac{π}{3}$),
由2k$π-\frac{π}{2}$≤4x+$\frac{π}{3}$≤2k$π+\frac{π}{2}$,k∈Z,解得g(x)的單調(diào)遞增區(qū)間為:[$\frac{kπ}{2}$-$\frac{5π}{24}$,$\frac{kπ}{2}$+$\frac{π}{24}$],k∈Z…12分

點(diǎn)評(píng) 本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換,三角函數(shù)恒等變換的應(yīng)用,周期公式,正弦函數(shù)的圖象和性質(zhì),考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列各組函數(shù)中,表示同一函數(shù)的是( 。
A.f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$B.f(x)=2x,g(x)=2(x+1)
C.f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2D.f(x)=$\frac{{x}^{2}+1}{x+1}$,g(x)=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>D)的離心率為$\frac{\sqrt{3}}{3}$,過右焦點(diǎn)F的直線l與C相交于A、B兩點(diǎn),當(dāng)l的斜率為1時(shí),坐標(biāo)原點(diǎn)O到l的距離為$\frac{\sqrt{2}}{2}$.
(1)求a、b的值;
(2)C上是否存在點(diǎn)P,使得當(dāng)l繞P轉(zhuǎn)到某一位置時(shí),有$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$成立?若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),(x>0)}\\{{2}^{-x}-1,(x≤0)}\end{array}\right.$,則f[f(-1)]=1;若f(x0)<1,則x0的取值范圍是-1≤x0<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=ex+4x-3的零點(diǎn)所在的區(qū)間為(  )
A.(0,$\frac{1}{4}$)B.($\frac{1}{4}$,$\frac{1}{2}$)C.($\frac{1}{2}$,$\frac{3}{4}$)D.($\frac{3}{4}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)y=$\sqrt{ln\sqrt{2x-1}}$+$\frac{1}{2+x}$的定義域是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=mx2-2x+3在[-2,+∞)上遞減,則實(shí)數(shù)m的取值范圍[-$\frac{1}{2}$,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若拋物線y=x2log2a+2xloga2+8的圖象在x軸上方,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知方程$\frac{{x}^{2}}{k-1}$-$\frac{{y}^{2}}{|k|}$=-1表示雙曲線,則實(shí)數(shù)k的取值范圍為( 。
A.(-∞,0)∪(0,1)∪(1,+∞)B.(1,+∞)C.(0,1)D.(-∞,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案