分析 (Ⅰ)由三角函數(shù)恒等變換的應(yīng)用可求函數(shù)解析式f(x)=2sin(2ωx-$\frac{π}{6}$),由題意可求周期T=$\frac{π}{2}$,由周期公式可求ω,從而可得函數(shù)解析式,進(jìn)而得解.
(Ⅱ)由(Ⅰ)可求g(x)=2sin(4x+4m-$\frac{π}{6}$),由題意可得4×$\frac{π}{6}$+4m-$\frac{π}{6}$=kπ(k∈Z),可得:m=$\frac{kπ}{4}$-$\frac{π}{8}$,可求m的最小值,由2k$π-\frac{π}{2}$≤4x+$\frac{π}{3}$≤2k$π+\frac{π}{2}$,k∈Z,解得g(x)的單調(diào)遞增區(qū)間.
解答 (本題滿分為12分)
解:(Ⅰ)由題意可得:f(x)=sin2ωx+2$\sqrt{3}$sinωxcosωx-cos2ωx
=-(cos2ωx-sin2ωx)+$\sqrt{3}$sin2ωx
=$\sqrt{3}$sin2ωx-cos2ωx
=2sin(2ωx-$\frac{π}{6}$)
∵f(x)的圖象相鄰兩條對(duì)稱軸的距離為$\frac{π}{4}$.
∴周期T=$\frac{π}{2}$,由$\frac{2π}{2ω}$=$\frac{π}{2}$,可得ω=2.
∴f(x)=2sin(4x-$\frac{π}{6}$),
∴f($\frac{π}{4}$)=2sin(4×$\frac{π}{4}$-$\frac{π}{6}$)=2sin$\frac{5π}{6}$=1…6分
(Ⅱ)由(Ⅰ)可知f(x)=2sin(4x-$\frac{π}{6}$),則g(x)=2sin(4x+4m-$\frac{π}{6}$),
∵($\frac{π}{6}$,0)為y=g(x)圖象的一個(gè)對(duì)稱中心,
∴2sin(4×$\frac{π}{6}$+4m-$\frac{π}{6}$)=0,解得:4×$\frac{π}{6}$+4m-$\frac{π}{6}$=kπ(k∈Z),可得:m=$\frac{kπ}{4}$-$\frac{π}{8}$,
當(dāng)k=1時(shí),m取得最小值$\frac{π}{8}$…10分本題
此時(shí)g(x)=2sin(4x+$\frac{π}{3}$),
由2k$π-\frac{π}{2}$≤4x+$\frac{π}{3}$≤2k$π+\frac{π}{2}$,k∈Z,解得g(x)的單調(diào)遞增區(qū)間為:[$\frac{kπ}{2}$-$\frac{5π}{24}$,$\frac{kπ}{2}$+$\frac{π}{24}$],k∈Z…12分
點(diǎn)評(píng) 本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換,三角函數(shù)恒等變換的應(yīng)用,周期公式,正弦函數(shù)的圖象和性質(zhì),考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$ | B. | f(x)=2x,g(x)=2(x+1) | ||
C. | f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2 | D. | f(x)=$\frac{{x}^{2}+1}{x+1}$,g(x)=x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1}{4}$) | B. | ($\frac{1}{4}$,$\frac{1}{2}$) | C. | ($\frac{1}{2}$,$\frac{3}{4}$) | D. | ($\frac{3}{4}$,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0)∪(0,1)∪(1,+∞) | B. | (1,+∞) | C. | (0,1) | D. | (-∞,0) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com