若不等式a>2sinxcosx+
3
cos2x
恒成立,則實(shí)數(shù)a的取值范圍為
 
考點(diǎn):三角函數(shù)的化簡求值,函數(shù)恒成立問題
專題:計(jì)算題
分析:令f(x)=2sinxcosx+
3
cos2x,則f(x)=2sin(2x+
π
3
),由題意可得,于是問題得到解決.
解答: 解:令f(x)=2sinxcosx+
3
cos2x=2sin(2x+
π
3
),
∴不等式a>2sinxcosx+
3
cos2x恒成立,
就是a>f(x)max成立,而f(x)max=2,
∴a>2.
∴實(shí)數(shù)a的取值范圍為(2,+∞).
點(diǎn)評:本題考查三角函數(shù)的化簡求值,理解題意得到a>f(x)max是關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,若不等式組
x+y-1≥0
x-1≤0
ax-y+1≥0
(α為常數(shù))所表示的平面區(qū)域內(nèi)的面積等于2,則a的值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的面積為
3
,且
AB
AC
=2

(1)求角A的大小;
(2)求
2si
n
2
 
A
2
+2sin
A
2
cos
A
2
-1
cos(
π
4
-A)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對定義在[0,1]上,并且同時(shí)滿足以下兩個(gè)條件的函數(shù)f(x)稱為G函數(shù).
①對任意的x∈[0,1],總有f(x)≥0;
②當(dāng)x1≥0,x2≥0,x1+x2≤1時(shí),總有f(x1+x2)≥f(x1)+f(x2)成立.
已知函數(shù)g(x)=x2與h(x)=a•2x-1是定義在[0,1]上的函數(shù).
(1)試問函數(shù)g(x)是否為G函數(shù)?并說明理由;
(2)若函數(shù)h(x)是G函數(shù),求實(shí)數(shù)a的值;
(3)在(2)的條件下,若方程g(2x-1)+h(x)=m有解,求實(shí)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)兩個(gè)方程x2-4x+lga=0,x2-4x+lgb=0(a≠b)的四個(gè)根組成一個(gè)公差為2的等差數(shù)列,則ab的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,首項(xiàng)為1的等比數(shù)列{bn}的公比為q,S2=a3=b3,且a1,a3,b2成等比數(shù)列.
(1)求{an}和{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,若2Sn-nan=b+loga(2Tn+1)對一切正整數(shù)n成立,求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有大小形狀完全相同的標(biāo)號為i的i個(gè)球(i=1,2,3),現(xiàn)從中隨機(jī)取出2個(gè)球,記取出的這兩個(gè)球的標(biāo)號數(shù)之和為ξ,則隨機(jī)變量的數(shù)學(xué)期望Eξ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合M={x|x2+x-6=0},N={x|ax-1=0},且M∩N=N,則實(shí)數(shù)a的取值組成的集合是 (  )
A、{
1
2
,-
1
3
}
B、{-
1
2
,
1
3
}
C、{-
1
2
,0,
1
3
}
D、{-
1
3
,0,
1
2
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知半圓的直徑|AB|=20,l為半圓外一直線,且與BA的延長線交于點(diǎn)T,|AT|=4,半圓上相異兩點(diǎn)M、N與直線l的距離|MP|、|NQ|滿足條件
|MP|
|MA|
=
|NQ|
|NA|
=1
,則|AM|+|AN|的值為(  )
A、22B、20C、18D、16

查看答案和解析>>

同步練習(xí)冊答案