對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.有同學(xué)發(fā)現(xiàn)“任何一個三次函數(shù)都有‘拐點(diǎn)’;任何一個三次函數(shù)都有對稱中心”,且‘拐點(diǎn)’就是對稱中心.請你將這一發(fā)現(xiàn)作為條件.
(1)函數(shù)f(x)=x3-3x2+3x的對稱中心為
 

(2)若函數(shù)g(x)=
1
3
x3-
1
2
x2+3x-
5
12
,則
9
i=1
g(
i
10
)=
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:正確求出對稱中心,利用對稱中心的性質(zhì)即可求出.
解答: 解:(1)依題意,f'(x)=3x2-6x+3,
∴f''(x)=6x-6.
由f''(x)=0,即6x-6=0,解得x=1,
又 f(1)=1,
∴f(x)=x3-3x2+2x+2的“拐點(diǎn)”坐標(biāo)是(1,).
∴函數(shù)f(x)=x3-3x2+3x的對稱中心為(1,1);
故答案為:(1,1);
(2)由題意,g′(x)=x2-x+3,∴g(x)=2x-1,
令g(x)=0,解得x=
1
2
,
又g(
1
2
)=1,∴函數(shù)g(x)的對稱中心為(
1
2
,1),
∴g(
1
10
)+g(
9
10
)=2,g(
2
10
)+g(
8
10
)=2,
  g(
3
10
)=g(
7
10
)=2,g(
4
10
)+g(
6
10
)=2,
9
i=1
g(
i
10
)
=4×2+1=9,
故答案為:9.
點(diǎn)評:正確求出對稱中心并掌握對稱中心的性質(zhì)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象與直線y=x無交點(diǎn),現(xiàn)有下列結(jié)論:
(1)若a=1,b=2,則c>
1
4

(2)若a+b+c=0,則a<0
(3)函數(shù)g(x)=ax2-bx+c的圖象與直線y=-x也一定沒有交點(diǎn).
(4)若a>0,則不等式f[f(x)]>x對一切實(shí)數(shù)x都成立;
(5)方程f[f(x)]=x一定沒有實(shí)數(shù)根;
其中正確的結(jié)論是
 
 (寫出所有正確結(jié)論的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=4x+2x+1+1的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,已知圓O:ρ=4sinθ,則過點(diǎn)P(
2
,
π
4
)的直線l被圓O所截,則所截的弦長最長時,直線l的極坐標(biāo)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足:f(x+2)•f(x)=1,當(dāng)x∈[-1,1)時,f(x)=log2(4-x),則f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0),拋物線G:y2=4cx(c是雙曲線C的半焦距)與雙曲線C在第一象限內(nèi)的交點(diǎn)為P,雙曲線C的左、右焦點(diǎn)分別為F1、F2,若(
F1F2
+
PF2
)•
PF1
=0,則雙曲線C的離心率為( 。
A、
2
+1
B、
2
C、3+2
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列各式71=7,72=49,73=343,74=2401,75=16807,…,則72014的末尾兩位數(shù)是( 。
A、01B、43C、49D、07

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(1,0),
b
=(
1
2
,
1
2
),則下列結(jié)論中正確的是( 。
A、
a
-
b
b
垂直
B、|
a
|=|
b
|
C、
a
b
=
2
2
D、
a
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3+2x2-4x+5在[-4,1]上的最大值和最小值分別是( 。
A、13,
95
27
B、4,-11
C、13,-11
D、13,最小值不確定

查看答案和解析>>

同步練習(xí)冊答案