【題目】如圖,A、B兩點(diǎn)都在河的對(duì)岸(不可到達(dá)),為了測(cè)量A、B兩點(diǎn)間的距離,選取一條基線CD,A、B、C、D在一平面內(nèi).測(cè)得:CD=200m,∠ADB=∠ACB=30°,∠CBD=60°,則AB=( )
A. m
B.200 m
C.100 m
D.數(shù)據(jù)不夠,無(wú)法計(jì)算
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年中國(guó)(云南賽區(qū))三對(duì)三籃球聯(lián)賽在昆明市體育局的大力支持下,圓滿順利結(jié)束.組織方統(tǒng)計(jì)了來(lái)自,,,,球隊(duì)的男子的平均身高與本次比賽的平均得分,如下表所示:
球隊(duì) | |||||
平均身高(單位:) | 170 | 174 | 176 | 181 | 179 |
平均得分(單位:分) | 62 | 64 | 66 | 70 | 68 |
(1)根據(jù)表中數(shù)據(jù),求關(guān)于的線性回歸方程(系數(shù)精確到);
(2)若隊(duì)平均身高為,根據(jù)(1)中所求得的回歸方程,預(yù)測(cè)隊(duì)的平均得分.(精確到個(gè)位)
注:回歸方程中斜率和截距最小二乘估計(jì)公式分別為
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在公差為d的等差數(shù)列{an}中,已知a1=10,5a1a3=(2a2+2)2 .
(1)求d和an的值;
(2)若d<0,求|a1|+|a2|+|a3|+…+|a2021|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年11月,第十一屆中國(guó)(珠海)國(guó)際航空航天博覽會(huì)開幕式當(dāng)天,殲-20的首次亮相給觀眾留下了極深的印象.某參賽國(guó)展示了最新研制的兩種型號(hào)的無(wú)人機(jī),先從參觀人員中隨機(jī)抽取100人對(duì)這兩種型號(hào)的無(wú)人機(jī)進(jìn)行評(píng)價(jià),評(píng)價(jià)分為三個(gè)等級(jí):優(yōu)秀、良好、合格.由統(tǒng)計(jì)信息可知,甲型號(hào)無(wú)人機(jī)被評(píng)為優(yōu)秀的頻率為、良好的頻率為;乙型號(hào)無(wú)人機(jī)被評(píng)為優(yōu)秀的頻率為,且被評(píng)為良好的頻率是合格的頻率的5倍.
(1) 求這100人中對(duì)乙型號(hào)無(wú)人機(jī)評(píng)為優(yōu)秀和良好的人數(shù);
(2) 如果從這100人中按對(duì)甲型號(hào)無(wú)人機(jī)的評(píng)價(jià)等級(jí)用分層抽樣的方法抽取5人,然后從其他對(duì)乙型號(hào)無(wú)人機(jī)評(píng)優(yōu)秀、良好的人員中各選取1人進(jìn)行座談會(huì),會(huì)后從這7人中隨機(jī)抽取2人進(jìn)行現(xiàn)場(chǎng)操作體驗(yàn)活動(dòng),求進(jìn)行現(xiàn)場(chǎng)操作體驗(yàn)活動(dòng)的2人都評(píng)優(yōu)秀的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程.
(2)從圓C外一點(diǎn)P(x1,y1)向該圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求使得|PM|取得最小值的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列1,a1 , a2 , 9是等差數(shù)列,數(shù)列1,b1 , b2 , b3 , 9是等比數(shù)列,則 的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(, 是自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】農(nóng)科院的專家為了了解新培育的甲、乙兩種麥苗的長(zhǎng)勢(shì)情況,從甲、乙兩種麥苗的試驗(yàn)田中各抽取6株麥苗測(cè)量麥苗的株高,數(shù)據(jù)如下:(單位:cm)
甲:9,10,11,12,10,20
乙:8,14,13,10,12,21.
(1)在給出的方框內(nèi)繪出所抽取的甲、乙兩種麥苗株高的莖葉圖;
(2)分別計(jì)算所抽取的甲、乙兩種麥苗株高的平均數(shù)與方差,并由此判斷甲、乙兩種麥苗的長(zhǎng)勢(shì)情況.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com