5.已知數(shù)列{an}滿足:a1,a2-a1,a3-a2,…,an-an-1…是首項(xiàng)為1,公比為3的等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

分析 (1)由題意可得a1=1,an-an-1=3n-1,n>1.運(yùn)用等比數(shù)列的求和公式,可得{an}的通項(xiàng)公式;
(2)運(yùn)用數(shù)列的求和方法:分組求和,結(jié)合等比數(shù)列的求和公式,計(jì)算化簡即可得到所求.

解答 解:(1)由題意可得a1=1,an-an-1=3n-1,n>1.
可得an=a1+(a2-a1)+…+an-an-1=1+3+…+3n-1,
=$\frac{1-{3}^{n}}{1-3}$=$\frac{1}{2}$(3n-1);
(2)前n項(xiàng)和Sn=$\frac{1}{2}$[(3-1)+(32-1)+…+(3n-1)]
=$\frac{1}{2}$(3+32+…+3n-n)
=$\frac{1}{2}$[$\frac{3(1-{3}^{n})}{1-3}$-n]=$\frac{{3}^{n+1}-2n-3}{4}$.

點(diǎn)評 本題考查等比數(shù)列的通項(xiàng)和求和公式的運(yùn)用,考查數(shù)列的求和方法:分組求和,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求下列函數(shù)的周期:
(1)y=cos$\frac{1}{2}$x;
(2)y=3sin($\frac{x}{2}$-$\frac{π}{4}$);
((3)y=|sin2x|;
(4)y=2sin($\frac{1}{2}$x+$\frac{π}{3}$)-cos($\frac{1}{2}$x-$\frac{π}{6}$)+7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.己知i為虛數(shù)單位,復(fù)數(shù)z=(1-i)3的虛部為(  )
A.-2iB.iC.1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.若A(7,a),B(b,-1),C(2,5)三點(diǎn)都在傾斜角為45°的直線上,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知$\overrightarrow{a}$與$\overrightarrow$不共線,$\overrightarrow{m}$=$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$,$\overrightarrow{n}$=x$\overrightarrow{a}$+3$\overrightarrow$,若$\overrightarrow{m}$與$\overrightarrow{n}$共線,則x的值等于-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知sinθ=$\frac{4}{5}$,且θ∈($\frac{π}{2}$,π),求sin(θ-$\frac{π}{6}$)和cos(θ+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若函數(shù)f(x)=x3-x-1在區(qū)間[1,1.5]內(nèi)的一個(gè)零點(diǎn)附近曲函數(shù)值用二分法逐次計(jì)算列表如下:
 x 1 1.5 1.25 1.3751.3125 
 f(x)-1 0.875-0.2969 0.2246-0.05151
那么方程x3-x-1=0的一個(gè)近似根(精確度為0.1)為 ( 。
A.1.3B.1.3125C.1.4375D.1.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知x,y的取值如下表所示:
x0134
y2.24.34.86.7
從散點(diǎn)圖分析,y與x線性相關(guān),且$\stackrel{∧}{y}$=0.95x+$\stackrel{∧}{a}$,則當(dāng)x=5時(shí),$\stackrel{∧}{y}$的值是(  )
A.7.35B.7.33C.7.03D.2.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.一組數(shù)據(jù)為15,17,14,10,15,17,17,14,16,12,設(shè)其平均值為m,中位數(shù)為n,眾數(shù)為p,則有m,n,p的大小關(guān)系為m<n<p.

查看答案和解析>>

同步練習(xí)冊答案