17.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{|x-1|}-1,x≥0}\\{{x}^{2}+2x+1,x<0}\end{array}\right.$,若f2(x)-(3a-1)f(x)+a2=0有5個不同的實(shí)數(shù)解,則a=2.

分析 令t=f(x),方程f2(x)-(3a-1)f(x)+a2=0可化為t2-(3a-1)t+a2=0,畫出函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{|x-1|}-1,x≥0}\\{{x}^{2}+2x+1,x<0}\end{array}\right.$的圖象,數(shù)形結(jié)合,可得方程t2-(3a-1)t+a2=0有兩個根,其中一個為1,一個為0或大于1的數(shù),進(jìn)而可得答案.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{|x-1|}-1,x≥0}\\{{x}^{2}+2x+1,x<0}\end{array}\right.$的圖象如圖所示:
令t=f(x),則方程f2(x)-(3a-1)f(x)+a2=0可化為t2-(3a-1)t+a2=0,
若方程f2(x)-(3a-1)f(x)+a2=0有5個不同的實(shí)數(shù)解,
則方程t2-(3a-1)t+a2=0有兩個根,其中一個為1,一個為0或大于1的數(shù),
將t=1代入得:1-(3a-1)+a2=0,
解得:a=1,或a=2,
當(dāng)a=1時,方程t2-(3a-1)t+a2=0可化為:方程t2-2t+1=0,此時方程只有一個根1,不滿足條件;
當(dāng)a=2時,方程t2-(3a-1)t+a2=0可化為:方程t2-5t+4=0,此時方程一個根為1,一個根為4,滿足條件;
綜上所述:a=2,
故答案為:2

點(diǎn)評 本題考查的知識點(diǎn)是分段函數(shù)的應(yīng)用,方程的根與函數(shù)零點(diǎn)的關(guān)系,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知中心在坐標(biāo)原點(diǎn)的橢圓E的長軸的一個端點(diǎn)是拋物線y2=4$\sqrt{5}$x的焦點(diǎn),且橢圓E的離心率是$\frac{\sqrt{5}}{5}$
(1)求橢圓E的方程;
(2)過點(diǎn)C(-1,0)的動直線與橢圓E相交于A,B兩點(diǎn).若線段AB的中點(diǎn)的橫坐標(biāo)是-$\frac{1}{2}$,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若x,y滿足約束條件$\left\{\begin{array}{l}{x+1≤0}\\{x-y≤0}\\{x+y≤0}\end{array}\right.$,則$\frac{y-1}{x}$的最大值為( 。
A.2B.$\frac{1}{2}$C.3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+2x取極小值時,x的值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)定義在(0,+∞)上的函數(shù)f(x)滿足x2f′(x)+2xf(x)=1+lnx,f(1)=0,若關(guān)于x的方程f(x)=a有兩個不等實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍為(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知橢圓:$\frac{x^2}{9}+\frac{y^2}{4}=1$,左右焦點(diǎn)分別為F1,F(xiàn)2,過F1的直線l交橢圓于A,B 兩點(diǎn),則|$\overrightarrow{B{F}_{2}}$|+|$\overrightarrow{A{F}_{2}}$|的最大值為$\frac{28}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.計算:
(1)$\frac{1}{\sqrt{0.04}}$+($\frac{1}{\sqrt{27}}$)${\;}^{\frac{1}{3}}$+($\sqrt{2}$+1)-1-2${\;}^{\frac{1}{2}}$+(-2)0
(2)$\frac{2}{5}$lg32+lg50+$\sqrt{(lg3)^{2}-lg9+1}$-lg$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某基建公司年初以100萬元購進(jìn)一輛挖掘機(jī),以每年22萬元的價格出租給工程隊(duì).基建公司負(fù)責(zé)挖掘機(jī)的維護(hù),第一年維護(hù)費(fèi)為2萬元,隨著機(jī)器磨損,以后每年的維護(hù)費(fèi)比上一年多2萬元,同時該機(jī)器第x(x∈N*,x≤16)年末可以以(80-5x)萬元的價格出售.
(1)寫出基建公司到第x年末所得總利潤y(萬元)關(guān)于x(年)的函數(shù)解析式,并求其最大值;
(2)為使經(jīng)濟(jì)效益最大化,即年平均利潤最大,基建公司應(yīng)在第幾年末出售挖掘機(jī)?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在四面體ABCD中,△ABD,△ACD,△DBC和△ABC全等,且AB=AC=$\sqrt{3}$,BC=2;求證:平面BCD⊥平面ABC.

查看答案和解析>>

同步練習(xí)冊答案