【題目】某學校為加強學生的交通安全教育,對學校旁邊,兩個路口進行了8天的檢測調(diào)查,得到每天各路口不按交通規(guī)則過馬路的學生人數(shù)(如莖葉圖所示),且路口數(shù)據(jù)的平均數(shù)比路口數(shù)據(jù)的平均數(shù)小2.
(1)求出路口8個數(shù)據(jù)中的中位數(shù)和莖葉圖中的值;
(2)在路口的數(shù)據(jù)中任取大于35的2個數(shù)據(jù),求所抽取的兩個數(shù)據(jù)中至少有一個不小于40的概率.
【答案】(1),;(2).
【解析】
試題分析:(1)由莖葉圖可得路口個數(shù)據(jù)中為最中間兩個數(shù),由此計算中位數(shù),又路口個數(shù)據(jù)的平均數(shù)為,可得;(2)在路口的數(shù)據(jù)中任取個大于的數(shù)據(jù),有種可能,其中“至少有一次抽取的數(shù)據(jù)不小于”的情況有種,故所求概率為.
試題解析:(1)路口8個數(shù)據(jù)的中位數(shù)為.
∵路口8個數(shù)據(jù)的平均數(shù)為,
∴路口8個數(shù)據(jù)的平均數(shù)為36,
∴,.
(2)在路口的數(shù)據(jù)中任取2個大于35的數(shù)據(jù),有如下10種可能結(jié)果:
(36,37),(36,38),(36,42),(36,45),(37,38),(37,42),(37,45),
(38,42),(38,45),(42,45).
其中“至少有一次抽取的數(shù)據(jù)不小于40”的情況有如下7種:
(36,42),(36,45),(37,42),(37,45),(38,42),(38,45),(42,45).
故所求的概率為
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(, )為奇函數(shù),且相鄰兩對稱軸間的距離為.
(1)當時,求的單調(diào)遞減區(qū)間;
(2)將函數(shù)的圖象沿軸方向向右平移個單位長度,再把橫坐標縮短到原來的(縱坐標不變),得到函數(shù)的圖象.當時,求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的對稱軸為,.
(1)求函數(shù)的最小值及取得最小值時的值;
(2)試確定的取值范圍,使至少有一個實根;
(3)當時,,對任意有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2sinxcosx-cos2x.
(1)求f(0)的值及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知四棱錐,底面為菱形, 平面, , 分別是的中點.
(Ⅰ)證明: ;
(Ⅱ)若為上的動點, 與平面所成最大角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓:的左、右焦點分別為、,左準線:和右準線:分別與軸相交于、兩點,且、恰好為線段的三等分點.
(1)求橢圓的離心率;
(2)過點作直線與橢圓相交于、兩點,且滿足,當△的面積最大時(為坐標原點),求橢圓的標準方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com