已知三棱柱ABC-A1B1C1中,平面A1AC⊥平面ABC,BC⊥AC,D為AC的中點(diǎn),AC=BC=AA1=A1C=2.
(Ⅰ)求證:AC1⊥平面A1BC;
(Ⅱ)求平面AA1B與平面A1BC的夾角的余弦值.
考點(diǎn):二面角的平面角及求法,直線與平面垂直的判定
專(zhuān)題:空間位置關(guān)系與距離,空間角
分析:(Ⅰ)由已知條件得BC⊥AC,BC⊥面A1AC,從而B(niǎo)C⊥AC1,又A1C⊥AC1,由此能證明AC1⊥平面A1BC.
(Ⅱ)由AO⊥平面A1BC,推導(dǎo)出∠AEO為平面AA1B與平面A1BC的夾角,由此能求出平面AA1B與平面A1BC的夾角的余弦值.
解答: (Ⅰ)證明:∵平面A1AC⊥平面ABC,BC⊥AC,
∴BC⊥面A1AC,∴BC⊥AC1,
∵AA1C1C是菱形,
∴A1C⊥AC1,
∵A1C∩BC=C,
∴AC1⊥平面A1BC.
(Ⅱ)解:由(Ⅰ)知AC1⊥平面A1BC,A1C∩AC1=O,∴AO⊥平面A1BC,
∴AO⊥A1B,又OE⊥A1B于E,∴A1B⊥AE,
∴∠AEO為平面AA1B與平面A1BC的夾角,
在Rt△A1EO中,A1O=1,∠OA1E=45°,
∴直角邊OE=
2
2
,
又∵Rt△A1EO中,AO=
3
,AE=
14
2
,
∴cos∠AEO=
OE
AE
=
7
7

∴平面AA1B與平面A1BC的夾角的余弦值為
7
7
點(diǎn)評(píng):本題考查直線與平面垂直的證明,考查二面角的余弦值的求法,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖(1)在等腰△ABC中,D,E,F(xiàn)分別是AB,AC和BC邊的中點(diǎn),∠ACB=120?,現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B.(如圖(2))
(Ⅰ)試判斷直線AB與平面DEF的位置關(guān)系,并說(shuō)明理由;
(Ⅱ)求二面角E-DF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為正方形,PA=PD,PA⊥AB,點(diǎn)E、F分別是棱AD、BC的中點(diǎn).
(Ⅰ)求證:AB⊥PD;
(Ⅱ)若AB=AP,求平面PAD與平面PBC所成銳二面角的余弦值;
(Ⅲ)若△PAD的面積為1,在四棱錐P-ABCD內(nèi)部,放入一個(gè)半徑為R的球O,且球心O在截面PEF中,試探究R的最大值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=|x-3|+|x-4|
(Ⅰ)求函數(shù)g(x)=
2-f(x)
的定義域;
(Ⅱ)若存在實(shí)數(shù)x滿足f(x)≤ax-1,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p≠0,數(shù)列{an}滿足:a1=2,an+1=pan+1-p(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)bn=2-qn-1(n∈N*),當(dāng)n≥2時(shí),p,q都在區(qū)間(0,1)內(nèi)變化,且滿足p2n-2+q2n-2≤1時(shí),求所有點(diǎn)(an,bn)所構(gòu)成圖形的面積;
(3)當(dāng)p>1時(shí),證明:
n
p
a1
a2
+
a2
a3
+…+
an
an+1
n+1
p
(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知菱形ABCD的邊長(zhǎng)為6,∠BAD=60°,AC∩BD=O,將菱形ABCD沿對(duì)角線AC折起,使BD=3
2
,得到三棱錐B-ACD

(1)若CM=2MB,求證:直線OM與平面ABD不平行;
(2)求二面角A-BD-O的余弦值;
(3)設(shè)點(diǎn)N是線段BD上一個(gè)動(dòng)點(diǎn),試確定N點(diǎn)的位置,使得CN=4
2
,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:x2-2x-3<0;q:m<x<m+6,
(1)求不等式x2-2x-3<0的解集;
(2)若p是q的充分不必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①函數(shù)y=cos(2x-
π
6
)圖象的一條對(duì)稱(chēng)軸是x=
12

②在同一坐標(biāo)系中,函數(shù)y=sinx與y=lgx的交點(diǎn)個(gè)數(shù)為3個(gè);
③將函數(shù)y=sin(2x+
π
3
)的圖象向右平移
π
3
個(gè)單位長(zhǎng)度可得到函數(shù)y=sin2x的圖象;
④存在實(shí)數(shù)x,使得等式sinx+cosx=
3
2
成立;
其中正確的命題為
 
(寫(xiě)出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x5+ax3+bx15+cx23+ex-10且f(-2)=36,那么f(2)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案