18.若集合A={x|x2-1≤0},B={y|y=x2,x∈R},則A∩B=( 。
A.{x|-1≤x≤1}B.{x|x≥0}C.{x|0≤x≤1}D.

分析 求出A中不等式的解集確定出A,求出B中y的范圍確定出B,找出兩集合的交集即可.

解答 解:由A中不等式變形得:x2≤1,
解得:-1≤x≤1,即A={x|-1≤x≤1},
由B中y=x2≥0,得到B={y|y≥0},
則A∩B={x|0≤x≤1},
故選:C.

點(diǎn)評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)對一切實(shí)數(shù)x都滿足f(1+x)=f(1-x),且當(dāng)x∈(-∞,1]時f(x)=2x,若f(m)$>\frac{1}{2}$,則m的取值范圍為-1<m<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)$f(x)=\frac{{\sqrt{4-{2^x}}}}{x-1}$的定義域?yàn)閧x|x≤2且x≠1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.曲線y=2sinx(0≤x≤π)與x軸圍成的封閉圖形的面積為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=-x3+2ax2-a2x(x∈R),其中a∈R
(Ⅰ)當(dāng)a=1時,求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)當(dāng)a=3時,求函數(shù)f(x)的極大值和極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列函數(shù)是偶函數(shù),且在區(qū)間(0,+∞)上單調(diào)遞減的是(  )
A.y=2xB.y=log2xC.y=|x|D.y=x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(1)請你舉2個滿足“對定義域內(nèi)任意實(shí)數(shù)a,b,都有f(a•b)=f(a)+f(b)”的函數(shù)的例子;
(2)請你舉2個滿足“對定義域內(nèi)任意實(shí)數(shù)a,b,都有f(a+b)=f(a)•f(b)”的函數(shù)的例子;
(3)請你舉2個滿足“對定義域內(nèi)任意實(shí)數(shù)a,b,都有f(a•b)=f(a)•f(b)”的函數(shù)的例子.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log}_2x,x>0\\ 3^x,x≤0\end{array}\right.$,
(1)畫出f(x)的函數(shù)圖象;
(2)若關(guān)于x的方程f(x)+x-a=0有兩個實(shí)數(shù)根,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知兩定點(diǎn)B(-3,0),C(3,0),△ABC的周長等于16,則頂點(diǎn)A的軌跡方程為$\frac{x^2}{25}+\frac{y^2}{16}=1(y≠0)$.

查看答案和解析>>

同步練習(xí)冊答案