A. | $(0,\frac{2}{3})$ | B. | $(\frac{1}{2},\frac{2}{3})$ | C. | $(\frac{2}{5},\frac{1}{2})$ | D. | $(0,\frac{2}{5})$ |
分析 令g(x)=t,畫出y=f(t)與y=λ的圖象,則方程f(t)=λ的解有3個,由圖象可得,0<λ<1.且三個解分別為t1=-1-λ,t2=-1+λ,t3=10λ再由g(x)=t,應(yīng)用判別式大于0,分別求解,最后求交集即可.
解答 解:令g(x)=t,則方程f(t)=λ的解有3個,由圖象可得,0<λ<1.
且三個解分別為t1=-1-λ,t2=-1+λ,t3=10λ,
則x2-4x+1+4λ=-1-λ,x2-4x+1+4λ=-1+λ,
x2-4x+1+4λ=10λ,均有兩個不相等的實根,
則△1>0,且△2>0,且△3>0,
即16-4(2+5λ)>0且16-4(2+3λ)>0,解得0<λ<$\frac{2}{5}$,
當(dāng)0<λ<$\frac{2}{5}$時,△3=16-4(1+4λ-10λ)>0即3-4λ+10λ>0恒成立,
故λ的取值范圍為(0,$\frac{2}{5}$).
故選D.
點(diǎn)評 本題考查分段函數(shù)的應(yīng)用,考查數(shù)形結(jié)合的思想方法,方程解的問題轉(zhuǎn)化為函數(shù)圖象的交點(diǎn)問題,由二次方程的判別式得到解決,本題有一定的難度.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1或-1 | B. | 1 | C. | -1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 15 | C. | 4 | D. | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,3] | B. | [-1,3] | C. | {-1,0,3} | D. | {0,1,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com