為了尋找馬航MH370殘骸,我國“雪龍?zhí)枴笨瓶即?014年3月26日從港口O出發(fā),沿北偏東α角的射線OZ方向航行,而在港口北偏東β角的方向上有一個給科考船補給物資的小島A,OA=300
13
海里,且tanα=
1
3
,cosβ=
2
13
.現(xiàn)指揮部需要緊急征調位于港口O正東m海里的B處的補給船,速往小島A裝上補給物資供給科考船.該船沿BA方向全速追趕科考船,并在C處相遇.經(jīng)測算當兩船運行的航線與海岸線OB圍成的三角形OBC的面積S最小時,這種補給方案最優(yōu).
(1)求S關于m的函數(shù)關系式S(m);
(2)應征調位于港口正東多少海里處的補給船只,補給方案最優(yōu)?
考點:解三角形的實際應用
專題:應用題,解三角形
分析:先以O為原點,正北方向為軸建立直角坐標系.
(1)先求出直線OZ的方程,然后根據(jù)β的正余弦值和OA的距離求出A的坐標,進而可以得到直線AB的方程,然后再與直線OZ的方程聯(lián)立求出C點的坐標,根據(jù)三角形的面積公式可得到答案.
(2)根據(jù)(1)中S(m)的關系式,進行變形整理,然后利用基配方法求出最小值.
解答: 解:(1)以O點為原點,正北的方向為y軸正方向建立直角坐標系,…(1分)
則直線OZ的方程為y=3x,
設點A(x0,y0),則x0=300
13
sinβ=900,y0=300
13
cosβ=600,
∴A(3a,2a),即A(900,600),…(3分)
又B(m,0),則直線AB的方程為:y=
600
900-m
(x-m),…(4分)
由此得到C點坐標為:(
200m
m-700
,
600m
m-700
),…(6分)
∴S(m)=S△OBC=
1
2
|OB||yc|=
300m2
m-700
(m>700). …(8分)
(2)由(1)知S(m)=
300m2
m-700
=
300
-
700
m2
+
1
m
=
300
-700(
1
m
-
1
1400
)2+
1
2800
…(10分)
∴當
1
m
=
1
1400
,即m=1400時,S(m)最小,
∴征調m=1400海里處的船只時,補給方案最優(yōu).…(14分)
點評:本題考查解三角形的實際應用、三角形的面積公式、配方法的應用,解題的關鍵是函數(shù)的建模思想和轉化思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知兩直線y=4x-2和y=3m-x的交點在第三象限,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為加快新能源汽車產業(yè)發(fā)展,推進節(jié)能減排,國家對消費者購買新能源汽車給予補貼,其中對純電動乘用車補貼標準如下表:
新能源汽車補貼標準
車輛類型 續(xù)駛里程R(公里)
80≤R<150 150≤R<250 R≥250
純電動乘用車 3.5萬元/輛 5萬元/輛 6萬元/輛
某校研究性學習小組,從汽車市場上隨機選取了M輛純電動乘用車,根據(jù)其續(xù)駛里程R(單次充電后能行駛的最大里程)作出了頻率與頻數(shù)的統(tǒng)計表:
分組 頻數(shù) 頻率
80≤R<150 2 0.2
150≤R<250 5 x
R≥250 y z
合計 M 1
(Ⅰ)求x,y,z,M的值;
(Ⅱ)若從這M輛純電動乘用車中任選2輛,求選到的2輛車續(xù)駛里程都不低于150公里的概率;
(Ⅲ)若以頻率作為概率,設X為購買一輛純電動乘用車獲得的補貼,求X的分布列和數(shù)學期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,直線l:y=kx+b與拋物線x2=2py(常數(shù)p>0)相交于不同的兩點A(x1,y1)、B(x2,y2),且|x2-x1|=h(h為定值),線段AB的中點為D,與直線l:y=kx+b平行的切線的切點為C(不與拋物線對稱軸平行或重合且與拋物線只有一個公共點的直線稱為拋物線的切線,這個公共點為切點).
(1)用k、b表示出C點、D點的坐標,并證明CD垂直于x軸;
(2)求△ABC的面積,證明△ABC的面積與k、b無關,只與h有關;
(3)小張所在的興趣小組完成上面兩個小題后,小張連AC、BC,再作與AC、BC平行的切線,切點分別為E、F,小張馬上寫出了△ACE、△BCF的面積,由此小張求出了直線l與拋物線圍成的面積,你認為小張能做到嗎?請你說出理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點為F1(-1,0),且點P(
6
2
,
1
2
)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知直線l:y=kx+m(k≠0)與橢圓C交于M,N兩點,直線OM、ON的斜率存在且和為4k,求證:m2為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某中學將100名高一新生分成水平相同的甲、乙兩個“平行班”,每班50人,吳老師采用A、B兩種不同的教學方式分別在甲、乙兩個班進行教學實驗.為了解教學效果,期末考試后,分別從兩個班級中各隨機抽取20名學生的成績進行統(tǒng)計,作出的莖葉圖如圖所示.記成績不低于90分者為“成績優(yōu)秀”.
(1)在乙班樣本的20個個體中,從不低于80分的成績中隨機抽取2個,記隨機變量ξ為抽到“成績優(yōu)秀”的個數(shù),求ξ的分布列及數(shù)學期望Eξ;
(2)由以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷有多大把握認為“成績優(yōu)秀”與教學方式有關?
 甲班(A方式)乙班(B方式)總計
成績優(yōu)秀   
成績不優(yōu)秀   
總計   

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tanθ和cotθ是方程x2+kx+1=0的兩個根,當|k|≥2時,求tan4θ-cot4θ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an},{bn},{cn},已知a1=4,b1=3,c1=5,an+1=an,bn+1=
an+cn
2
,cn+1=
an+bn
2
(n∈N*).
(1)求數(shù)列{cn-bn}的通項公式;
(2)求證:對任意n∈N*,bn+cn為定值;
(3)設Sn為數(shù)列{cn}的前n項和,若對任意n∈N*,都有p•(Sn-4n)∈[1,3],求實數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,射線OA、OB關于x軸對稱,且∠AOB=60°,在射線OA、OB上分別有動點P、Q滿足:S△POQ=9,設△POQ的重心為G.
(1)求G點的軌跡方程;
(2)點G到直線PQ距離的最大值是多少?

查看答案和解析>>

同步練習冊答案