如圖,直線l:y=kx+b與拋物線x2=2py(常數(shù)p>0)相交于不同的兩點A(x1,y1)、B(x2,y2),且|x2-x1|=h(h為定值),線段AB的中點為D,與直線l:y=kx+b平行的切線的切點為C(不與拋物線對稱軸平行或重合且與拋物線只有一個公共點的直線稱為拋物線的切線,這個公共點為切點).
(1)用k、b表示出C點、D點的坐標,并證明CD垂直于x軸;
(2)求△ABC的面積,證明△ABC的面積與k、b無關,只與h有關;
(3)小張所在的興趣小組完成上面兩個小題后,小張連AC、BC,再作與AC、BC平行的切線,切點分別為E、F,小張馬上寫出了△ACE、△BCF的面積,由此小張求出了直線l與拋物線圍成的面積,你認為小張能做到嗎?請你說出理由.
考點:拋物線的簡單性質(zhì)
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)直線l:y=kx+b代入拋物線x2=2py,求出D的坐標,設切線方程為y=kx+m,代入拋物線方程,求出C的坐標,即可證明結論;
(2)利用韋達定理,表示出三角形面積,即可得出結論;
(3)分別求出a1=S△ABC=
h3
16p
,a2=S△ACE+S△BCF=
1
4
h3
16p
,按上面構造三角形的方法,無限的進行下去,即可得出結論.
解答: 解:(1)由直線l:y=kx+b與拋物線x2=2py,
得x2-2pkx-2pb=0,
∴x1+x2=2pk,x1x2=-2pb
∴點D(pk,pk2+b)…(2分)
設切線方程為y=kx+m,
代入拋物線方程可得x2-2pkx-2pm=0,
得△=4p2k2+8pm=0,
m=
pk2
2
,切點的橫坐標為pk,得C(pk,
pk2
2
)…(4分)
由于C、D的橫坐標相同,∴CD垂直于x軸.…(6分)
(2)∵h2=|x2-x1|2=4p2k2+8pb,∴b=
h2-4p2k2
8p
.…(8分)
∴S△ABC=
1
2
|CD||x2-x1|=
h3
16p
.…(11分)
∴△ABC的面積與k、b無關,只與h有關.…(12分)
(3)由(1)知CD垂直于x軸,|xC-xA|=|xB-xC|=
h
2
,
由(2)可得△ACE、△BCF的面積只與
h
2
有關,將S△ABC=
h3
16p
中的h換成
h
2

可得S△ACE=S△BCF=
1
8
h3
16p
.…(14分)
記a1=S△ABC=
h3
16p
,a2=S△ACE+S△BCF=
1
4
h3
16p
,按上面構造三角形的方法,無限的進行下去,可以將拋物線C與線段AB所圍成的封閉圖形的面積,看成無窮多個三角形的面積的和,即數(shù)列{an}的無窮項和,此數(shù)列公比為
1
4
,
∴封閉圖形的面積S=
a1
1-
1
4
=
4
3
a1
=
h3
12p
…(18分)
點評:本題考查直線與拋物線的位置關系,考查韋達定理的運用,考查三角形面積的計算,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知x﹑y∈R+,且2x+y=3,則
1
2x+1
+
1
y+2
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z=
i2
1+i
(i是虛數(shù)單位),則復數(shù)z在復平面內(nèi)對應的點位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設橢圓
x2
a2
+y2=1(a>1)的離心率為
3
2
,過點Q(1,0)任作一條弦交橢圓于C、D兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設P為直線x=4上任意一點,kPC,kPQ,kPD分別為直線PC,PQ,PD的斜率.是否存在實數(shù)λ,使kPC+kPD=λkPQ恒成立?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

新一屆中央領導集體非常重視勤儉節(jié)約,從“光盤行動”到“節(jié)約辦春晚”.到飯店吃飯是吃光盤子或時打包帶走,稱為“光盤族”,否則稱為“非光盤族”.政治課上政治老師選派幾位同學組成研究性小組,從某社區(qū)[25,55]歲的人群中隨機抽取n人進行了一次調(diào)查,得到如下統(tǒng)計表:
組數(shù)分組頻數(shù)頻率光盤族占本組比例
第1組[25,30)500.0530%
第2組[30,35)1000.1030%
第3組[35,40)1500.1540%
第4組[40,45)2000.2050%
第5組[45,50)ab65%
第6組[50,55)2000.2060%
(1)求a,b的值,并估計本社區(qū)[25,55)歲的人群中“光盤族”所占比例;
(2)從年齡段在[35,40)與[40,45)的“光盤族”中采用分層抽樣方法抽取8人參加節(jié)約糧食宣傳活動,并從這8人中選取2人作為領隊.
(i)已知選取2人中1人來自[35,40)中的前提下,求另一人來自年齡段在[40,45)中的概率;
(ii)求2名領隊的年齡之和的期望值.(每個年齡段以中間值計算).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某品牌電視機代理銷售商根據(jù)近年銷售和利潤情況得出某種型號電視機的利潤情況有如下規(guī)律:每臺電視機的最終銷售利潤與其無故障使用時間T(單位:年)有關.若T≤1,則每臺銷售利潤為0元;若1<T≤3,則每臺銷售利潤為100元;若T>3,則每臺銷售利潤為200元.設每臺該種電視機的無故障使用時間T≤1,1<T≤3,T>3這三種情況發(fā)生的概率分別為P1,P2,P3,又知P1,P2是方程10x2-6x+a=0的兩個根,且P2=P3
(Ⅰ)求P1,P2,P3的值;
(Ⅱ)記ξ表示銷售兩臺這種電視機的銷售利潤總和,寫出ξ的所有結果,并求ξ的分布列;
(Ⅲ)求銷售兩臺這種型號電視機的銷售利潤總和的期望值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了尋找馬航MH370殘骸,我國“雪龍?zhí)枴笨瓶即?014年3月26日從港口O出發(fā),沿北偏東α角的射線OZ方向航行,而在港口北偏東β角的方向上有一個給科考船補給物資的小島A,OA=300
13
海里,且tanα=
1
3
,cosβ=
2
13
.現(xiàn)指揮部需要緊急征調(diào)位于港口O正東m海里的B處的補給船,速往小島A裝上補給物資供給科考船.該船沿BA方向全速追趕科考船,并在C處相遇.經(jīng)測算當兩船運行的航線與海岸線OB圍成的三角形OBC的面積S最小時,這種補給方案最優(yōu).
(1)求S關于m的函數(shù)關系式S(m);
(2)應征調(diào)位于港口正東多少海里處的補給船只,補給方案最優(yōu)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某市2013年發(fā)放汽車牌照12萬張,其中燃油型汽車牌照10萬張,電動型汽車2萬張.為了節(jié)能減排和控制總量,從2013年開始,每年電動型汽車牌照按50%增長,而燃油型汽車牌照每一年比上一年減少0.5萬張,同時規(guī)定一旦某年發(fā)放的牌照超過15萬張,以后每一年發(fā)放的電動車的牌照的數(shù)量維持在這一年的水平不變.
(1)記2013年為第一年,每年發(fā)放的燃油型汽車牌照數(shù)構成數(shù)列{an},每年發(fā)放的電動型汽車牌照數(shù)為構成數(shù)列{bn},完成下列表格,并寫出這兩個數(shù)列的通項公式;
a1=10 a2=9.5 a3=
 
   
a4=
 
     
b1=2 b2=
 
b3=
 
      
b4=
 
       
(2)從2013年算起,求二十年發(fā)放的汽車牌照總量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在某批次的某種燈泡中,隨機地抽取200個樣品,并對其壽命進行追蹤調(diào)查,將結果列成頻率分布表如下.根據(jù)壽命將燈泡分成優(yōu)等品、正品和次品三個等級,其中壽命大于或等于500天的燈泡是優(yōu)等品,壽命小于300天的燈泡是次品,其余的燈泡是正品.
壽命(天) 頻數(shù) 頻率
[100,200) 20 0.10
[200,300) 30 a
[300,400) 70 0.35
[400,500) b 0.15
[500,600) 50 0.25
合計 200 1
(Ⅰ)根據(jù)頻率分布表中的數(shù)據(jù),寫出a,b的值;
(Ⅱ)某人從燈泡樣品中隨機地購買了n(n∈N*)個,如果這n個燈泡的等級情況恰好與按三個等級分層抽樣所得的結果相同,求n的最小值;
(Ⅲ)某人從這個批次的燈泡中隨機地購買了3個進行使用,若以上述頻率作為概率,用X表示此人所購買的燈泡中次品的個數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案