某中學(xué)將100名高一新生分成水平相同的甲、乙兩個“平行班”,每班50人,吳老師采用A、B兩種不同的教學(xué)方式分別在甲、乙兩個班進行教學(xué)實驗.為了解教學(xué)效果,期末考試后,分別從兩個班級中各隨機抽取20名學(xué)生的成績進行統(tǒng)計,作出的莖葉圖如圖所示.記成績不低于90分者為“成績優(yōu)秀”.
(1)在乙班樣本的20個個體中,從不低于80分的成績中隨機抽取2個,記隨機變量ξ為抽到“成績優(yōu)秀”的個數(shù),求ξ的分布列及數(shù)學(xué)期望Eξ;
(2)由以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷有多大把握認(rèn)為“成績優(yōu)秀”與教學(xué)方式有關(guān)?
 甲班(A方式)乙班(B方式)總計
成績優(yōu)秀   
成績不優(yōu)秀   
總計   
考點:離散型隨機變量的期望與方差
專題:概率與統(tǒng)計
分析:(1)由題意得ξ=0,1,2,分別求出P(ξ=0),P(ξ=1),P(ξ=2),由此能求出ξ的分布列和Eξ.
(2)由已知數(shù)據(jù)能完成2×2列聯(lián)表,據(jù)列聯(lián)表中的數(shù)據(jù),求出K2≈3.137>2.706,所以有90%的把握認(rèn)為“成績優(yōu)秀”與教學(xué)方式有關(guān).
解答: 解:(1)由題意得ξ=0,1,2….(1分)
P(ξ=0)=
C
2
4
C
2
9
=
1
6
,
P(ξ=1)=
C
1
5
C
1
4
C
2
9
=
5
9
,
P(ξ=2)=
C
2
5
C
2
9
=
5
18
,….(4分)
∴ξ的分布列為:
 ξ  0  1  2
 P  
1
6
 
5
9
 
5
18
Eξ=
1
6
+1×
5
9
+2×
5
18
=
10
9
.….(6分)
(2)由已知數(shù)據(jù)得
   甲班(A方式)  乙班(B方式) 總計
 成績優(yōu)秀  1  5  6
 成績不優(yōu)秀  19  15  34
 總計  20  20  40
….(10分)
根據(jù)列聯(lián)表中的數(shù)據(jù),K2=
40×(1×15-5×19)2
6×34×20×20
≈3.137.
由于3.137>2.706,
∴有90%的把握認(rèn)為“成績優(yōu)秀”與教學(xué)方式有關(guān).….(12分)
點評:本題考查離散型隨機變量的分布列和數(shù)學(xué)期望的求法,考查2×2列聯(lián)表的應(yīng)用,是中檔題,在歷年高考中都是必考題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

集合M={x|x=1+a2,a∈N*},P={y|y=x2-4x+5,x∈N*},下列關(guān)系中正確的是( 。
A、M?PB、P?M
C、M=PD、M?P且P?M

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓
x2
a2
+y2=1(a>1)的離心率為
3
2
,過點Q(1,0)任作一條弦交橢圓于C、D兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)P為直線x=4上任意一點,kPC,kPQ,kPD分別為直線PC,PQ,PD的斜率.是否存在實數(shù)λ,使kPC+kPD=λkPQ恒成立?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某品牌電視機代理銷售商根據(jù)近年銷售和利潤情況得出某種型號電視機的利潤情況有如下規(guī)律:每臺電視機的最終銷售利潤與其無故障使用時間T(單位:年)有關(guān).若T≤1,則每臺銷售利潤為0元;若1<T≤3,則每臺銷售利潤為100元;若T>3,則每臺銷售利潤為200元.設(shè)每臺該種電視機的無故障使用時間T≤1,1<T≤3,T>3這三種情況發(fā)生的概率分別為P1,P2,P3,又知P1,P2是方程10x2-6x+a=0的兩個根,且P2=P3
(Ⅰ)求P1,P2,P3的值;
(Ⅱ)記ξ表示銷售兩臺這種電視機的銷售利潤總和,寫出ξ的所有結(jié)果,并求ξ的分布列;
(Ⅲ)求銷售兩臺這種型號電視機的銷售利潤總和的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了尋找馬航MH370殘骸,我國“雪龍?zhí)枴笨瓶即?014年3月26日從港口O出發(fā),沿北偏東α角的射線OZ方向航行,而在港口北偏東β角的方向上有一個給科考船補給物資的小島A,OA=300
13
海里,且tanα=
1
3
,cosβ=
2
13
.現(xiàn)指揮部需要緊急征調(diào)位于港口O正東m海里的B處的補給船,速往小島A裝上補給物資供給科考船.該船沿BA方向全速追趕科考船,并在C處相遇.經(jīng)測算當(dāng)兩船運行的航線與海岸線OB圍成的三角形OBC的面積S最小時,這種補給方案最優(yōu).
(1)求S關(guān)于m的函數(shù)關(guān)系式S(m);
(2)應(yīng)征調(diào)位于港口正東多少海里處的補給船只,補給方案最優(yōu)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個袋中裝有若干個大小相同的黑球、白球和紅球.已知從袋中任意摸出1個球,得到黑球的概率為
2
5
;從袋中任意摸出2個球,至少得到1個白球的概率為
7
9

(Ⅰ)若袋中共有10個球;
(1)求白球的個數(shù);
(2)從袋中任意摸出3個球,記得到白球的個數(shù)為ξ,求ξ的數(shù)學(xué)期望E(ξ).
(Ⅱ)求證:從袋中任意摸出2個球,至少得到1個黑球的概率不大于
7
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市2013年發(fā)放汽車牌照12萬張,其中燃油型汽車牌照10萬張,電動型汽車2萬張.為了節(jié)能減排和控制總量,從2013年開始,每年電動型汽車牌照按50%增長,而燃油型汽車牌照每一年比上一年減少0.5萬張,同時規(guī)定一旦某年發(fā)放的牌照超過15萬張,以后每一年發(fā)放的電動車的牌照的數(shù)量維持在這一年的水平不變.
(1)記2013年為第一年,每年發(fā)放的燃油型汽車牌照數(shù)構(gòu)成數(shù)列{an},每年發(fā)放的電動型汽車牌照數(shù)為構(gòu)成數(shù)列{bn},完成下列表格,并寫出這兩個數(shù)列的通項公式;
a1=10 a2=9.5 a3=
 
   
a4=
 
     
b1=2 b2=
 
b3=
 
      
b4=
 
       
(2)從2013年算起,求二十年發(fā)放的汽車牌照總量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A1(0,
2
),B1
6
,0),M(2,1),直線l:x=
4
3
6
,若曲線C上的動點P到點B1的距離等于P到直線l的距離的a倍且曲線C過點A1
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)平行于OM(O為坐標(biāo)原點)的直線l1在y軸上的截距為m(m≠0),且l1交曲線C于兩點A、B.
(ⅰ)求證:直線MA、MB與x軸始終圍成一個等腰三角形;
(ⅱ)若點A、B均位于y軸的右側(cè),求直線MA的斜率k1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

今年年初,我國多個地區(qū)發(fā)生了持續(xù)性大規(guī)模的霧霾天氣,給我們的身體健康產(chǎn)生了巨大的威脅.私家車的尾氣排放也是造成霧霾天氣的重要因素之一,因此在生活中我們應(yīng)該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預(yù)防霧霾出一份力.為此,很多城市實施了機動車車尾號限行,我市某報社為了解市區(qū)公眾對“車輛限行”的態(tài)度,隨機抽查了50人,將調(diào)查情況進行整理后制成下表:
年齡(歲) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75]
頻數(shù) 5 10 15 10 5 5
贊成人數(shù) 4 6 9 6 3 4
(Ⅰ)完成被調(diào)查人員的頻率分布直方圖;

(Ⅱ)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機選取兩人進行進行追蹤調(diào)查,記選中的4人中不贊成“車輛限行”的人數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案