分析 可以看出該函數(shù)為復(fù)合函數(shù),從而得到一次函數(shù)y=ax+3在[2,+∞)上為增函數(shù),從而有a>0.
解答 解:設(shè)ax+3=t,y=$lo{g}_{\frac{1}{2}}t$,該對(duì)數(shù)函數(shù)為減函數(shù);
∴t=ax+3在[2,+∞)上為增函數(shù);
∴a>0;
∴a∈(0,+∞).
故答案為:(0,+∞).
點(diǎn)評(píng) 考查復(fù)合函數(shù)的定義,復(fù)合函數(shù)的單調(diào)性判斷,一次函數(shù)及對(duì)數(shù)函數(shù)的單調(diào)性,清楚復(fù)合函數(shù)是由哪兩個(gè)函數(shù)復(fù)合而成.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 增函數(shù)且f(x)>0 | B. | 增函數(shù)且f(x)<0 | C. | 減函數(shù)且f(x)>0 | D. | 減函數(shù)且f(x)<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -1 | D. | -$\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com