函數(shù)y=
1
1-lgx
的定義域為
 
考點:對數(shù)函數(shù)的單調(diào)性與特殊點,函數(shù)的定義域及其求法
專題:計算題,函數(shù)的性質(zhì)及應用
分析:直接由分母中根式內(nèi)部的代數(shù)式大于等于0求解對數(shù)不等式得答案.
解答: 解:要使原函數(shù)有意義,則1-lgx>0,即lgx<1.
解得:0<x<10.
∴函數(shù)y=
1
1-lgx
的定義域為(0,10).
故答案為:(0,10).
點評:本題考查了函數(shù)的定義域及其求法,考查了對數(shù)不等式的解法,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-ax2+b在點(1,1)處的切線方程為y=x+3.
(Ⅰ)求a,b的值;
(Ⅱ)求函數(shù)f(x)的極大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的兩個頂點A(-1,5)和B(0,-1),又知∠C的平分線所在的直線方程為2x-3y+6=0,求三角形各邊所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=f(x)在定義域(-2,4)內(nèi)可導,其圖象如圖所示,設(shè)函數(shù)f(x)的導函數(shù)為f′(x),則不等式f′(x)>0的解集為
 
′.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理科)①在平面內(nèi),F(xiàn)1、F2是定點,|F1F2|=6,動點M滿足|MF1|-|MF2|=4|,則點M的軌跡是雙曲線.
②在△ABC中,“∠B=60°”是“∠A,∠B,∠C三個角成等差數(shù)列”的充要條件.
③“若-3<m<5,則方程
x2
5-m
+
y2
m+3
=1是橢圓”.
④已知向量
a
,
b
c
是空間的一個基底,則向量
a
+
b
a
-
b
,
c
也是空間的一個基底.
其中真命題的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線x+y-1=0與圓(x-1)2+(y-2)2=R2(R>0)相切,則R的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)據(jù)a1,a2,a3,…,an的方差為2,則數(shù)據(jù)2a1,2a2,2a3,…,2an的方差為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=2x2+4x-1在[-2,2]上的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}和{bn}的通項公式分別為an=3n+5,bn=4n+8,則它們的公共項組成的新數(shù)列{cn}的通項公式為cn=
 

查看答案和解析>>

同步練習冊答案